Mario Espinoza
University of Costa Rica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mario Espinoza.
PLOS ONE | 2014
Mario Espinoza; Mike Cappo; Michelle R. Heupel; Andrew J. Tobin; Colin A. Simpfendorfer
Quantifying shark distribution patterns and species-specific habitat associations in response to geographic and environmental drivers is critical to assessing risk of exposure to fishing, habitat degradation, and the effects of climate change. The present study examined shark distribution patterns, species-habitat associations, and marine reserve use with baited remote underwater video stations (BRUVS) along the entire Great Barrier Reef Marine Park (GBRMP) over a ten year period. Overall, 21 species of sharks from five families and two orders were recorded. Grey reef Carcharhinus amblyrhynchos, silvertip C. albimarginatus, tiger Galeocerdo cuvier, and sliteye Loxodon macrorhinus sharks were the most abundant species (>64% of shark abundances). Multivariate regression trees showed that hard coral cover produced the primary split separating shark assemblages. Four indicator species had consistently higher abundances and contributed to explaining most of the differences in shark assemblages: C. amblyrhynchos, C. albimarginatus, G. cuvier, and whitetip reef Triaenodon obesus sharks. Relative distance along the GBRMP had the greatest influence on shark occurrence and species richness, which increased at both ends of the sampling range (southern and northern sites) relative to intermediate latitudes. Hard coral cover and distance across the shelf were also important predictors of shark distribution. The relative abundance of sharks was significantly higher in non-fished sites, highlighting the conservation value and benefits of the GBRMP zoning. However, our results also showed that hard coral cover had a large effect on the abundance of reef-associated shark species, indicating that coral reef health may be important for the success of marine protected areas. Therefore, understanding shark distribution patterns, species-habitat associations, and the drivers responsible for those patterns is essential for developing sound management and conservation approaches.
Frontiers in Marine Science | 2015
Michelle R. Heupel; Colin A. Simpfendorfer; Mario Espinoza; Amy F. Smoothey; Andrew J. Tobin; Victor M. Peddemors
Understanding movement and connectivity of populations is increasingly important as human and climate change pressures become more pervasive, but can be problematic in difficult to observe species such as large marine predators. We examined the movements of bull sharks, Carcharhinus leucas, using acoustic telemetry arrays along the east coast of Australia. Approximately half of 75 individuals released in temperate waters moved into tropical reef regions, with both sexes undertaking long-range movements and multiple individuals making return trips. Only 3% of 39 individuals released in tropical reef habitats moved south to temperate waters, but approximately 25% moved to southern reef or subtropical coastal areas. These results reveal complex linkages along the east coast of Australia which suggest a tropical reef based population comprised of individuals that migrate to multiple regions. Connectivity between locations along the east coast of Australia creates important conservation challenges for resource managers in multiple jurisdictions.
Ecological Applications | 2015
Mario Espinoza; Elodie J.I. Lédée; Colin A. Simpfendorfer; Andrew J. Tobin; Michelle R. Heupel
Understanding the efficacy of marine protected areas (MPAs) for wide-ranging predators is essential to designing effective management and conservation approaches. The use of acoustic monitoring and network analysis can improve our understanding of the spatial ecology and functional connectivity of reef-associated species, providing a useful approach for reef-based conservation planning. This study compared and contrasted the movement and connectivity of sharks with different degrees of reef association. We examined the residency, dispersal, degree of reef connectivity, and MPA use of grey reef (Carcharhinus amblyrhynchos), silvertip (C. albimarginatus), and bull (C. leucas) sharks monitored in the central Great Barrier Reef (GBR). An array of 56 acoustic receivers was used to monitor shark movements on 17 semi-isolated reefs. Carcharhinus amblyrhynchos and C. albimarginatus were detected most days at or near their tagging reef. However, while C. amblyrhynchos spent 80% of monitoring days in the array, C. albimarginatus was only detected 50% of the time. Despite both species moving similar distances (< 50 km), a large portion of the population of C. albimarginatus (71%) was detected on multiple reefs and moved more frequently between reefs and management zones than C. amblyrhynchos. Carcharhinus leucas was detected less than 20% of the time within the tagging array, and 42% of the population undertook long-range migrations to other arrays in the GBR. Networks derived for C. leucas were larger and more complex than those for C. amblyrhynchos and C. albimarginatus. Our findings suggest that protecting specific reefs based on prior knowledge (e.g., healthier reefs with high fish biomass) and increasing the level of protection to include nearby, closely spaced reef habitats (< 20 km) may perform better for species like C. albimarginatus than having either a single or a network of isolated MPAs. This design would also provide protection for larger male C. amblyrhynchos, which tend to disperse more and use larger areas than females. For wide-ranging sharks like C. leucas, a combination of spatial planning and other alternative measures is critical. Our findings demonstrate that acoustic monitoring can serve as a useful platform for designing more effective MPA networks for reef predators displaying a range of movement patterns.
PLOS ONE | 2016
Mario Espinoza; Michelle R. Heupel; Andrew J. Tobin; Colin A. Simpfendorfer
Understanding animal movement decisions that involve migration is critical for evaluating population connectivity, and thus persistence. Recent work on sharks has shown that often only a portion of the adult population will undertake migrations, while the rest may be resident in an area for long periods. Defining the extent to which adult sharks use specific habitats and their migratory behaviour is essential for assessing their risk of exposure to threats such as fishing and habitat degradation. The present study used acoustic telemetry to examine residency patterns and migratory behaviour of adult bull sharks (Carcharhinus leucas) along the East coast of Australia. Fifty-six VR2W acoustic receivers were used to monitor the movements of 33 bull sharks in the central Great Barrier Reef (GBR). Both males and females were detected year-round, but their abundance and residency peaked between September and December across years (2012–2014). High individual variability in reef use patterns was apparent, with some individuals leaving the array for long periods, whereas others (36%) exhibited medium (0.20–0.40) or high residency (> 0.50). A large portion of the population (51%) undertook migrations of up to 1,400 km to other coral reefs and/or inshore coastal habitats in Queensland and New South Wales. Most of these individuals (76%) were mature females, and the timing of migrations coincided with the austral summer (Dec-Feb). All migrating individuals (except one) returned to the central GBR, highlighting its importance as a potential foraging ground. Our findings suggest that adult bull sharks appear to be highly dependent on coral reef resources and provide evidence of partial migration, where only a portion of the female population undertook seasonal migrations potentially to give birth. Given that estuarine habitats face constant anthropogenic pressures, understanding partial migration and habitat connectivity of large coastal predators should be a priority for their management.
Journal of Fish Biology | 2012
Mario Espinoza; T. M. Clarke; F. Villalobos‐Rojas; Ingo S. Wehrtmann
Stomachs from 511 Raja velezi and 340 Mustelus henlei captured as by-catch in the commercial trawling fishery (2010-2012) were analysed to examine diet composition, ontogenetic shifts and degree of dietary overlap between species life stages in the Pacific Ocean of Costa Rica. Shrimps were the most important prey categories in the diet of R. velezi, while teleosts and cephalopods dominated the diet of M. henlei. Diet comparisons between different stages of R. velezi and M. henlei revealed clear ontogenetic dietary shifts: crustaceans (mainly shrimps, crabs and stomatopods) dominated the diet of immature individuals, and adults had a higher proportion of teleosts. The results suggest that R. velezi is an epibenthic predator that specializes in shrimps during early life stages, and to a lesser extent, teleosts as it matures, while M. henlei is an opportunistic predator with a highly diverse diet consisting of teleosts, cephalopods, shrimps and stomatopods. This study also found little evidence of dietary overlap between species or life stages and suggests that intra- and interspecific competition between R. velezi and M. henlei may be reduced by: (1) diet specialization in immature stages of R. velezi, (2) ontogenetic dietary shifts between immature and mature individuals, (3) prey-size selectivity in larger individuals of R. velezi and (4) differences in depth utilization in overlapping geographical regions.
Ecology and Evolution | 2015
Chris L. Chabot; Mario Espinoza; Ismael Mascareñas-Osorio; Axayácatl Rocha-Olivares
We assessed the effects of the prominent biogeographic (Point Conception and the Peninsula of Baja California) and phylogeographic barriers (Los Angeles Region) of the northeastern Pacific on the population connectivity of the brown smoothhound shark, Mustelus henlei (Triakidae). Data from the mitochondrial control region and six nuclear microsatellite loci revealed significant population structure among three populations: northern (San Francisco), central (Santa Barbara, Santa Catalina, Punta Lobos, and San Felipe), and southern (Costa Rica). Patterns of long-term and contemporary migration were incongruent, with long-term migration being asymmetric and occurring in a north to south direction and a lack of significant contemporary migration observed between localities with the exception of Punta Lobos that contributed migrants to all localities within the central population. Our findings indicate that Point Conception may be restricting gene flow between the northern and central populations whereas barriers to gene flow within the central population would seem to be ineffective; additionally, a contemporary expansion of tropical M. henlei into subtropical and temperate waters may have been observed.
Journal of Fish Biology | 2013
Mario Espinoza; T. M. Clarke; F. Villalobos‐Rojas; Ingo S. Wehrtmann
The diet and diel feeding behaviour of the banded guitarfish Zapteryx xyster were examined along the Pacific coast of Costa Rica. A sample of 235 stomachs was collected between March 2010 and December 2011 as part of an ongoing shrimp-trawl by-catch monitoring programme. Samples from multiple day and night periods allowed testing the hypothesis that Z. xyster is more active at night, thus increasing the amount of food intake during night-time. Overall, shrimps (52·3% prey-specific index of relative importance, P(SIRIi) ) and teleosts (27·2% P(SIRIi) ) were the most important prey categories. Juveniles fed primarily on smaller shrimps (Solenocera spp.), while adults shifted to larger prey. The amount of food consumed (as % of bodymass) by juvenile and adult Z. xyster increased significantly between 0400 and 1200 hours, while the proportion of empty stomachs decreased during the same time interval. These findings contradict the hypothesis that Z. xyster is more active and feeds at night. The study also revealed that Z. xyster, particularly juveniles, forage on several shrimp species and overlap spatially with the Costa Rican bottom-trawl fisheries. This has important management and conservation implications as Z. xyster may be experiencing high by-catch rates, and because of their life history is presumed to be vulnerable to intense levels of exploitation.
Frontiers in Marine Science | 2018
Mario Espinoza; Eric Díaz; Arturo Angulo; Sebastián Hernández; Tayler M. Clarke
Understanding key aspects of the biology and ecology of chondrichthyan fishes (sharks, rays, and chimaeras), as well as the range of threats affecting their populations is crucial given the rapid rate at which some species are declining. In the Eastern Tropical Pacific (ETP), the lack of knowledge, unreliable (or nonexistent) landing statistics and limited enforcement of existing fisheries regulations has hindered management and conservation efforts for chondrichthyan species. This review evaluated our current understanding of Costa Rican chondrichthyans and their conservation status. Specifically, we (1) provide an updated checklist on the species richness, habitat use and distribution patterns, (2) summarise the most relevant chondrichthyan studies (scientific publications, theses, and official technical reports), (3) identify knowledge gaps, (4) discuss fisheries-related threats, and (5) highlight the management challenges and research needs to effectively protect their populations. A total of 99 chondrichthyan species are formally recorded in Costa Rican waters, from which 15% are threatened with extinction and 41% are “Data Deficient” based on the IUCN (International Union for Conservation of Nature) Red List. A total of 121 studies were published between 1891 and 2017; 82% in the Pacific (24% from Isla del Coco) and only 18% from the Caribbean Sea. These results highlight the need to redirect research efforts on specific taxonomic groups and geographic regions (i.e., Caribbean). Based on our review, improving the quality and quantity of fisheries landing statistics, as well as determining the degree of overlap between chondrichthyans and small-scale coastal/pelagic fisheries remains a priority. We proposed an adaptive management framework for chondrichthyan fisheries in data-poor countries where management goals/targets are clearly defined. This framework could strengthen the conservation of chondrichthyan populations in Costa Rica and the region.
Marine Biology | 2015
Mario Espinoza; Michelle R. Heupel; Andrew J. Tobin; Colin A. Simpfendorfer
Revista De Biologia Tropical | 2014
Mario Espinoza; Eva Salas