Mario Hubert
Bristol-Myers Squibb
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mario Hubert.
Journal of Pharmaceutical Sciences | 2011
Jinjiang Li; Li Tao; Mandar V. Dali; David Buckley; Julia Gao; Mario Hubert
In this study, the objective is to investigate the effect of the physical state of a binder on wet granulation and granule properties using a binary model system (CaCO(3)-binder), which is essential for understanding the mechanism of wet granulation when binder is added in a dry state. Part I focus on studying the phase behavior or the physical state change of four binders: PVP K12, K29/32, HPC, and HPMC, after exposure to either moisture or liquid water. Their interaction with water was studied by measuring the water sorption of binders and the binary blends of CaCO(3)-binder. Changes in the physical states of the binders at room temperature as a function of water content was monitored via dialysis experiments, and characterized by determining the glass transition temperatures (T(g)) of the binders with water. The results suggest that the PVP binders can absorb more water than the cellulosic binders which is same for binder alone and in the binary blends. PVP K12 undergoes a phase transition from the glassy state to the rubbery/solution state at much lower water content than PVP K29/32 (10% vs. 20%) at room temperature. The phase transition for HPC occurs with 10-15% water based on rheological measurements.
Pharmaceutical Research | 2015
Jinjiang Li; Junshu Zhao; Li Tao; Jennifer Wang; Vrushali Waknis; Duohai Pan; Mario Hubert; Krishnaswamy Srinivas Raghavan; Jatin M. Patel
PurposeTo investigate the structural effect of polymeric excipients on the behavior of free volume of drug-polymer dispersions in relation to glass transition.MethodsTwo drugs (indomethacin and ketoconazole) were selected to prepare amorphous dispersions with PVP, PVPVA, HPC, and HPMCAS through spray drying. The physical attributes of the dispersions were characterized using SEM and PXRD. The free volume (hole-size) of the dispersions along with drugs and polymers was measured using positron annihilation lifetime spectroscopy (PALS). Their glass transition temperatures (Tgs) were determined using DSC and DMA. FTIR spectra were recorded to identify hydrogen bonding in the dispersions.ResultsThe chain structural difference-flexible (PVP and PVPVA) vs. inflexible (HPC and HPMCAS)-significantly impacts the free volume and Tgs of the dispersions as well as their deviation from ideality. Relative to Tg, free volume seems to be a better measure of hydrogen bonding interaction for the dispersions of PVP, HPC, and HPMCAS. The free volume of polymers and their dispersions in general appears to be related to their conformations in solution.ConclusionsBoth the backbone chain rigidity of polymers as well as drug-polymer interaction can impact the free volume and glass transition behaviors of the dispersions.
Journal of Pharmaceutical Sciences | 2011
Jinjiang Li; Li Tao; Mandar V. Dali; David Buckley; Julia Gao; Mario Hubert
The objective is to provide mechanistic understanding of a preferred wet granulation process that a binder is added in a dry state. Blends of CaCO(3) and binders were prepared and used as model systems, and they were exposed to either 96% RH (rubbery/solution state) or 60% RH (glassy state) at room temperature to control the physical state of the binders, followed by high-shear granulation and particle size measurement. The blends of PVP K12, PVP K29/32, and HPC showed a significant increase in particle size after exposure to 96% RH. An increase of aspect ratio was also observed for the blend of HPC. In contrast, the blends being exposed to 60% RH did not exhibit any increase in particle size or aspect ratio. Regarding the effect of binder molecular weight on the mechanical strength of granules, granules of PVP K29/32 had higher strength than granules of PVP K12. This can be explained using polymer entanglement theory, in which the degree of polymerization (DP) of (N ∼ 440-540) of PVP K29/32 is above the critical value (N(c) ∼ 300-600) for entanglement; while DP of PVP K12 (N ∼ 20-30) is below it. Finally, a water sorption-phase transition-diffusion induced granule growth model for granulation has been suggested.
International Journal of Pharmaceutics | 2008
Keyur R. Shah; Munir A. Hussain; Mario Hubert; Sherif Badawy
The purpose of this study was (a) to evaluate the factors affecting the form conversion of anhydrous lactose to the monohydrate form during wet granulation using water as the granulating agent and (b) study the effect of lactose form conversion on its compaction properties. A two-level full factorial design with two center points was used to evaluate the factors affecting form conversion. The three variables evaluated were percentage of microcrystalline cellulose (low 0 and high 20), water to intragranular solids ratio (low 0.10 and high 0.18) and drying conditions (tray drying and fluid bed drying). The presence of microcrystalline cellulose in the formulation did not provide any benefit in reducing the percent lactose conversion. But, the conversion was significantly reduced by decreasing the amount of water added to the granulation and/or by decreasing the drying time, using a fluid bed dryer compared to a tray dryer. In the second part of the study, complete conversion of the anhydrous lactose to monohydrate was achieved by storing the anhydrous form under 25 degrees C/97% RH for 4 weeks. Physical characterization (compactibility, surface area and surface morphology) was performed on the form converted material and compared to the as received anhydrous lactose. The physical characterization results indicated that even though anhydrous lactose undergoes complete form conversion to monohydrate form under high humidity and/or during wet granulation, it retains its inherent higher as received material compactibility and the BET surface area and porosity of the form converted material are higher than that of the as received anhydrous lactose.
Journal of Pharmaceutical Sciences | 2016
Ajit S. Narang; Tim Stevens; Mario Hubert; Srinivasa Paruchuri; Kevin Macias; Dilbir S. Bindra; Zhihui Gao; Sherif Badawy
Real-time process monitoring using a process analytical technology for granule size distribution can enable quality-by-design in drug product manufacturing. In this study, the resolution and sensitivity of chord length distribution (CLD) measured inline inside a high shear granulator using focused beam reflectance measurement (FBRM) C35 probe was investigated using different particle size grades of microcrystalline cellulose (MCC). In addition, the impact of water and impeller tip speed on the measurement accuracy as well as correlation with offline particle sizing techniques (FBRM, laser diffraction [Malvern Mastersizer®], microscopy [Sympatec QicPic®], and nested sieve analysis) was studied. Inline FBRM resolved size differences between different MCC grades, and the data correlated well with offline analyses. Impeller tip speed changed the number density of inline CLD measurements while addition of water reduced the CLD of dry MCC, likely due to deagglomeration of primary particles. In summary, inline FBRM CLD measurement in high shear granulator provides adequate resolution and reproducible measurements in the pharmaceutically relevant size range both in the presence and in the absence of water. Therefore, inline FBRM can be a valuable tool for the monitoring of high shear wet granulation.
Advanced Powder Technology | 2015
Shasad Sharif; Lynn M. DiMemmo; Matthias Thommes; Mario Hubert; Beth A. Sarsfield
Journal of Pharmaceutical Sciences | 2012
Jinjiang Li; Li Tao; David Buckley; Jing Tao; Julia Gao; Mario Hubert
Lab on a Chip | 2017
Lynn M. DiMemmo; A. Cameron Varano; Jonathan Haulenbeek; Yanping Liang; Kaya Patel; Madeline J. Dukes; Songyan Zheng; Mario Hubert; Steven P. Piccoli; Deborah F. Kelly
Journal of Pharmaceutical Sciences | 2013
Jinjiang Li; Li Tao; David Buckley; Jing Tao; Julia Gao; Mario Hubert
Powder Technology | 2011
Chen Liang; Derek Gao; Mario Hubert; Xiaotian Yin; Chao Gao