Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario Latronico is active.

Publication


Featured researches published by Mario Latronico.


Journal of Molecular Catalysis A-chemical | 2001

Homogeneous and heterogeneous catalytic oxidation of benzylic and secondary alcohols with a metal dioxygenato complex in the presence of 2-methylpropanal and dioxygen

Stefania Roberta Cicco; Mario Latronico; Piero Mastrorilli; Gian Paolo Suranna; Cosimo Francesco Nobile

Abstract The oxidation of benzylic and secondary alcohols under homogeneous conditions was achieved at 40°C using molecular oxygen as the oxidant in the presence of excess 2-methylpropanal and catalytic amount of Co(acac)2. The oxidation reactions were also carried out with a heterogeneous analogue of Co(acac)2 revealing that the supported cobalt polymer acts as an active and reusable catalyst.


Angewandte Chemie | 2015

Fixation and Release of Intact E4 Tetrahedra (E=P, As)

Fabian Spitzer; Marek Sierka; Mario Latronico; Piero Mastrorilli; Alexander V. Virovets; Manfred Scheer

By the reaction of [NacnacCuCH3CN] with white phosphorus (P4) and yellow arsenic (As4), the stabilization and enclosure of the intact E4 tetrahedra are realized and the disubstituted complexes [(NacnacCu)2(μ,η(2:2)-E4)] (1 a: E=P, 1 b: E=As) are formed. The mono-substituted complex [NacnacCu(η(2)-P4)] (2), was detected by the exchange reaction of 1 a with P4 and was only isolated using low-temperature work-up. All products were comprehensively spectroscopically and crystallographically characterized. The bonding situation in the products as intact E4 units (E=P, As) was confirmed by theory and was experimentally proven by the pyridine promoted release of the bridging E4 tetrahedra in 1.


Journal of Molecular Catalysis A-chemical | 2001

Aerobic oxidation of substituted phenols catalysed by metal acetylacetonates in the presence of 3-methylbutanal

Piero Mastrorilli; Francesco Muscio; Gian Paolo Suranna; Cosimo Francesco Nobile; Mario Latronico

Abstract The aerobic oxidation of substituted phenols with the catalytic system M(acac)n/3-methylbutanal/O2 has been investigated. Co(acac)2 and Mn(acac)3 promoted the transformation of 2,6-dimethylphenol and 2,6-di-t-butylphenol into their corresponding diphenoquinones and benzoquinones. In the oxidation of 2,3,6-trimethylphenol, the same catalysts yielded 32–34% of the relevant biphenol. Cu(acac)2 converted 2-naphthol into 1,1′-bi-2-naphthol with 84% yield. Supported Co(II) and Cu(II) complexes have also been used as heterogeneous catalysts for the oxidation of 2,6-di-t-butylphenol and 2-naphthol, respectively.


Analytical Chemistry | 2015

Performance Assessment in Fingerprinting and Multi Component Quantitative NMR Analyses.

Vito Gallo; Nicola Intini; Piero Mastrorilli; Mario Latronico; Pasquale Scapicchio; Maurizio Triggiani; Vitoantonio Bevilacqua; Paolo Fanizzi; Domenico Acquotti; Cristina Airoldi; Fabio Arnesano; Michael Assfalg; Francesca Benevelli; Davide Bertelli; Laura Ruth Cagliani; Luca Casadei; Flaminia Cesare Marincola; Giuseppe Colafemmina; Roberto Consonni; Cesare Cosentino; Silvia Davalli; Sandra A De Pascali; Virginia D'Aiuto; Andrea Faccini; Roberto Gobetto; Raffaele Lamanna; Francesca Liguori; Francesco Longobardi; Domenico Mallamace; Pierluigi Mazzei

An interlaboratory comparison (ILC) was organized with the aim to set up quality control indicators suitable for multicomponent quantitative analysis by nuclear magnetic resonance (NMR) spectroscopy. A total of 36 NMR data sets (corresponding to 1260 NMR spectra) were produced by 30 participants using 34 NMR spectrometers. The calibration line method was chosen for the quantification of a five-component model mixture. Results show that quantitative NMR is a robust quantification tool and that 26 out of 36 data sets resulted in statistically equivalent calibration lines for all considered NMR signals. The performance of each laboratory was assessed by means of a new performance index (named Qp-score) which is related to the difference between the experimental and the consensus values of the slope of the calibration lines. Laboratories endowed with a Qp-score falling within the suitable acceptability range are qualified to produce NMR spectra that can be considered statistically equivalent in terms of relative intensities of the signals. In addition, the specific response of nuclei to the experimental excitation/relaxation conditions was addressed by means of the parameter named NR. NR is related to the difference between the theoretical and the consensus slopes of the calibration lines and is specific for each signal produced by a well-defined set of acquisition parameters.


Inorganic Chemistry | 2008

Site selectivity in the protonation of a phosphinito bridged Pt(I)-Pt(I) complex: a combined NMR and density-functional theory mechanistic study.

Mario Latronico; Flavia Polini; Gallo; Piero Mastrorilli; Calmuschi-Cula B; Ulli Englert; Nazzareno Re; Repo T; Räisänen M

The protonation of the dinuclear phosphinito bridged complex [(PHCy2)Pt(mu-PCy2){kappa(2)P,O-mu-P(O)Cy2}Pt(PHCy2)] (Pt-Pt) (1) by Brønsted acids affords hydrido bridged Pt-Pt species the structure of which depends on the nature and on the amount of the acid used. The addition of 1 equiv of HX (X = Cl, Br, I) gives products of formal protonation of the Pt-Pt bond of formula syn-[(PHCy2)(X)Pt(mu-PCy2)(mu-H)Pt(PHCy2){kappaP-P(O)Cy2}] (Pt-Pt) (5, X = Cl; 6, X = Br; 8, X = I), containing a Pt-X bond and a dangling kappa P-P(O)Cy2 ligand. Uptake of a second equivalent of HX results in the protonation of the P(O)Cy2 ligand with formation of the complexes [(PHCy2)(X)Pt(mu-PCy2)(mu-H)Pt(PHCy2){kappaP-P(OH)Cy2}]X (Pt-Pt) (3, X = Cl; 4, X = Br; 9, X = I). Each step of protonation is reversible, thus reactions of 3, 4, with NaOH give, first, the corresponding neutral complexes 5, 6, and then the parent compound 1. While the complexes 3 and 4 are indefinitely stable, the iodine analogue 9 transforms into anti-[(PHCy2)(I)Pt(mu-PCy2)(mu-H)Pt(PHCy2)(I)] (Pt-Pt) (7) deriving from substitution of an iodo group for the P(OH)Cy2 ligand. Complexes 3 and 4 are isomorphous crystallizing in the triclinic space group P1 and show an intramolecular hydrogen bond and an interaction between the halide counteranion and the POH hydrogen. The occurrence of such an interaction also in solution was ascertained for 3 by (35)Cl NMR. Multinuclear NMR spectroscopy (including (31)P-(1)H HOESY) and density-functional theory calculations indicate that the mechanism of the reaction starts with a prior protonation of the oxygen with formation of an intermediate (12) endowed with a six membered Pt(1)-X...H-O-P-Pt(2) ring that evolves into thermodynamically stable products featuring the hydride ligand bridging the Pt atoms. Energy profiles calculated for the various steps of the reaction between 1 and HCl showed very low barriers for the proton transfer and the subsequent rearrangement to 12, while a barrier of 29 kcal mol(-1) was found for the transformation of 12 into 5.


Journal of the American Chemical Society | 2010

Facile Activation of Dihydrogen by a Phosphinito-Bridged Pt(I)-Pt(I) Complex

Piero Mastrorilli; Mario Latronico; Vito Gallo; Flavia Polini; Nazzareno Re; Alessandro Marrone; Roberto Gobetto; Silvano Ellena

The phosphinito-bridged Pt(I) complex [(PHCy(2))Pt(mu-PCy(2)){kappa(2)P,O-mu-P(O)Cy(2)}Pt(PHCy(2))](Pt-Pt) (1) reversibly adds H(2) under ambient conditions, giving cis-[(H)(PHCy(2))Pt(1)(mu-PCy(2))(mu-H)Pt(2)(PHCy(2)){kappaP-P(O)Cy(2)}](Pt-Pt) (2). Complex 2 slowly isomerizes spontaneously into the corresponding more stable isomer trans-[(PHCy(2))(H)Pt(mu-PCy(2))(mu-H)Pt(PHCy(2)){kappaP-P(O)Cy(2)}](Pt-Pt) (3). DFT calculations indicate that the reaction of 1 with H(2) occurs through an initial heterolytic splitting of the H(2) molecule assisted by the phosphinito oxygen with breaking of the Pt-O bond and hydrogenation of the Pt and O atoms, leading to the formation of the intermediate [(PHCy(2))(H)Pt(mu-PCy(2))Pt(PHCy(2)){kappaP-P(OH)Cy(2)}](Pt-Pt) (D), where the two split hydrogen atoms interact within a six-membered Pt-H...H-O-P-Pt ring. Compound D is a labile intermediate which easily evolves into the final dihydride complex 2 through a facile (9-15 kcal mol(-1), depending on the solvent) hydrogen shift from the phosphinito oxygen to the Pt-Pt bond. Information obtained by addition of para-H(2) on 1 are in agreement with the presence of a heterolytic pathway in the 1 --> 2 transformation. NMR experiments and DFT calculations also gave evidence for the nonclassical dihydrogen complex [(PHCy(2))(eta(2)-H(2))Pt(mu-PCy(2))Pt(PHCy(2)){kappaP-P(O)Cy(2)}](Pt-Pt) (4), which is an intermediate in the dehydrogenation of 2 to 1 and is also involved in intramolecular and intermolecular exchange processes. Experimental and DFT studies showed that the isomerization 2 --> 3 occurs via an intramolecular mechanism essentially consisting of the opening of the Pt-Pt bond and of the hydrogen bridge followed by the rotation of the coordination plane of the Pt center with the terminal hydride ligand.


Inorganic Chemistry | 2008

Reactivity of a phosphinito-bridged PtI-PtI complex with nucleophiles: substitution versus addition.

Vito Gallo; Mario Latronico; Piero Mastrorilli; Cosimo Francesco Nobile; Flavia Polini; Nazzareno Re; Ulli Englert

As a result of the strong electrophilic character of the Pt bound to O, the phosphinito-bridged PtI complex [(PHCy2)Pt(micro-PCy2){kappa2P,O-micro-P(O)Cy2}Pt(PHCy2)](Pt-Pt) (1) undergoes attack at the O-bound Pt atom by molecules such as di- and tricyclohexylphosphane, dicyclohexylphosphane oxide, and dicyclohexylphosphane sulfide. Thus, reaction of 1 with PHCy2 gives the symmetric PtI dimer [(PHCy2)Pt(micro-PCy2)]2(Pt-Pt) (2), while the hydrido-bridged complex syn-[(PHCy2){kappaP-P(O)Cy2}Pt(micro-PCy2)(micro-H)Pt(PHCy2){kappaP-P(O)Cy2}](Pt-Pt) (4) is obtained from reaction of 1 with P(O)HCy2; the thiophosphinito complex [(PHCy2)Pt(micro-PCy2){kappa2P,S-micro-P(S)Cy2}Pt(PHCy2)](Pt-Pt) (8) forms selectively in reaction of 1 with P(S)HCy2. For comparison, the reaction with PCy3 results only in ligand substitution, affording [(PCy3)Pt(micro-PCy2){kappa2P,O-micro-P(O)Cy2}Pt(PHCy2)](Pt-Pt) (5). DFT studies confirmed the remarkable electrophilicity of the oxygen-bound Pt and shed light on the nature of the metal-metal bond in Pt dimers.


Inorganic Chemistry | 2011

Hydrido Phosphanido Bridged Polynuclear Complexes Obtained by Protonation of a Phosphinito Bridged Pt(I) Complex with HBF4 and HF

Mario Latronico; Piero Mastrorilli; Gallo; Maria Michela Dell'Anna; Francesco Creati; Nazzareno Re; Ulli Englert

The protonation of the phosphinito-bridged Pt(I) complex [(PHCy(2))Pt(μ-PCy(2)){κ(2)P,O-μ-P(O)Cy(2)}Pt(PHCy(2))](Pt-Pt) (1) by aqueous HBF(4) or hydrofluoric acid leads selectively to the hydrido-bridged solvento species syn-[(PHCy(2))(H(2)O)Pt(μ-PCy(2))(μ-H)Pt(PHCy(2)){κP-P(OH)Cy(2)}](Y)(2)(Pt-Pt) ([2-H(2)O]Y(2)) {Y = BF(4), F(HF)(n)} when an excess of acid was used. On standing in halogenated solvents, complex [2-H(2)O](BF(4))(2) undergoes a slow but complete isomerization to [(PHCy(2))(2)Pt(μ-PCy(2))(μ-H)Pt{κP-P(OH)Cy(2)}(H(2)O)](BF(4))(2)(Pt-Pt) ([4-H(2)O][BF(4)](2)) having the P(OH)Cy(2) ligand trans to the hydride. The water molecule coordinated to platinum in [2-H(2)O][BF(4)](2) is readily replaced by halides, nitriles, and triphenylphosphane, and the acetonitrile complex [2-CH(3)CN][BF(4)](2) was characterized by XRD analysis. Solvento species other than aqua complexes, such as [2-acetone-d(6)](2+) or [2-CD(2)Cl(2)](2+) were obtained in solution by the reaction of excess etherate HBF(4) with 1 in the relevant solvent. The complex [2-H(2)O](Y)(2) [Y = F(HF)(n)] spontaneously isomerizes into the terminal hydrido complexes [(PHCy(2))Pt(μ-PCy(2)){κ(2)P,O-μ-P(O)Cy(2)}Pt(H)(PHCy(2))](Y)(Pt-Pt) ([6](Y)). In the presence of HF, complex [6](Y) transforms into the bis-phosphanido-bridged Pt(II) dinuclear complex [(PHCy(2))(H)Pt(μ-PCy(2))(2)Pt{κP-P(OH)Cy(2)}](Y)(Pt-Pt) ([7](Y)). When the reaction of 1 with HF was carried out with diluted hydrofluoric acid by allowing the HF to slowly diffuse into the dichloromethane solution, the main product was the linear 60e tetranuclear complex [(PHCy(2)){κP-P(O)Cy(2)}Pt(1)(μ-PCy(2))(μ-H)Pt(2)(μ-PCy(2))](2)(Pt(1)-Pt(2)) (8). Insoluble compound 8 is readily protonated by HBF(4) in dichloromethane, forming the more soluble species [(PHCy(2)){κP-P(OH)Cy(2)}Pt(1)(μ-PCy(2))(μ-H)Pt(2)(μ-PCy(2))](2)(BF(4))(2)(Pt(1)-Pt(2)) {[9][BF(4)](2)}. XRD analysis of [9][BF(4)](2)·2CH(2)Cl(2) shows that [9](2+) is comprised of four coplanar Pt atoms held together by four phosphanido and two hydrido bridges. Both XRD and NMR analyses indicate alternate intermetal distances with peripheral Pt-Pt bonds and a longer central Pt···Pt separation. DFT calculations allow tracing of the mechanistic pathways for the protonation of 1 by HBF(4) and HF and evaluation of their energetic aspects. Our results indicate that in both cases the protonation occurs through an initial proton transfer from the acid to the phosphinito oxygen, which then shuttles the incoming proton to the Pt-Pt bond. The different evolution of the reaction with HF, leading also to [6](Y) or 8, has been explained in terms of the peculiar behavior of the F(HF)(n)(-) anions and their strong basicity for n = 0 or 1.


Phosphorus Sulfur and Silicon and The Related Elements | 1994

SYNTHESIS AND CHARACTERIZATION OF AMINOPYRIDIN-2-YL-METHYL-PHOSPHONIC ACIDS

Salvatore Failla; Paolo Finocchiaro; Mario Latronico; Manuela Libertini

Abstract Amino-phosphonic acids and their diethyl esters containing one or two pyridyl moieties were synthetized in good yields, starting from the corresponding Shiff base as precursors. The new compounds were characterized by 1H- and 31P-NMR spectroscopy and preliminary results indicate that they are able to complex with transition metals. Therefore, such compounds can be of utility in diagnostic medicine, NMR imaging and in agrochemistry.


Inorganica Chimica Acta | 1992

Carbon dioxide-transition metal complexes. IV. New Ni(0)CO2 complexes with chelating diphosphines: influence of PNiP angle on complex stabilities

Pietro Mastrorilli; Giovanni Moro; C.F. Nobile; Mario Latronico

Abstract The reaction between Ni(0) complexes (dp) (dp = 1,2-bis(dicyclohexylphosphino)ethane, 1,3-bis(dicyclohexylphosphino)propane, 1,4-bis(dicyclohexylphosphino)butane; dcpe, dcpp, dcpb, respectively) and carbon dioxide is described. The influence of the PNiP bond angle on the stability of the corresponding adducts is discussed. The reactions of Ni(dcpp)CO2 and Ni(dcpb)CO2 with dioxygen are also described.

Collaboration


Dive into the Mario Latronico's collaboration.

Top Co-Authors

Avatar

Piero Mastrorilli

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Vito Gallo

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Stefano Todisco

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cosimo Francesco Nobile

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Antonino Rizzuti

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gian Paolo Suranna

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge