Mario Mairhofer
Medical University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mario Mairhofer.
Journal of Biological Chemistry | 2006
Ellen Umlauf; Mario Mairhofer; Rainer Prohaska
The cytoplasmically oriented monotopic integral membrane protein stomatin forms high-order oligomers and associates with lipid rafts. To characterize the domains that are involved in oligomerization and detergent-resistant membrane (DRM) association, we expressed truncation and point mutants of stomatin and analyzed their size and buoyancy by ultracentrifugation methods. A small C-terminal region of stomatin that is largely hydrophobic, Ser-Thr-Ile-Val-Phe-Pro-Leu-Pro-Ile (residues 264–272), proved to be crucial for oligomerization, whereas the N-terminal domain (residues 1–20) and the last 12 C-terminal amino acids (residues 276–287) were not essential. The introduction of alanine substitutions in the region 264–272 resulted in the appearance of monomers. Remarkably, only three of these residues, Ile-Val-Phe (residues 266–268), were found to be indispensable for the DRM association. Interestingly, the exchange of Pro-269 and to some extent the residues 270–272, which are essential for oligomerization, did not affect the DRM association of stomatin. This suggests that the formation of oligomers is not necessary for the association of stomatin with DRMs. Internal deletions near the membrane anchoring domain resulted in the formation of intermediate size oligomers suggesting a conformational interdependence of large parts of the C-terminal region. Fluorescence recovery after photobleaching analysis of the tagged, monomeric, non-DRM mutant ST-(1–262)-green fluorescent protein and wild type stomatin StomGFP showed a significantly higher lateral mobility of the truncation mutant in the plasma membrane suggesting a membrane interaction of the respective C-terminal region also in vivo.
Journal of Immunology | 2013
Valerie Fock; Mario Mairhofer; Gerlinde R. Otti; Ursula Hiden; Andreas Spittler; Harald Zeisler; Christian Fiala; Martin Knöfler; Jürgen Pollheimer
IL-33, the most recently discovered member of the IL-1 superfamily and ligand for the transmembrane form of ST2 (ST2L), has been linked to several human pathologies including rheumatoid arthritis, asthma, and cardiovascular disease. Deregulated levels of soluble ST2, the natural IL-33 inhibitor, have been reported in sera of preeclamptic patients. However, the role of IL-33 during healthy pregnancy remains elusive. In the current study, IL-33 was detected in the culture supernatants of human placental and decidual macrophages, identifying them as a major source of secreted IL-33 in the uteroplacental unit. Because flow cytometry and immunofluorescence stainings revealed membranous ST2L expression on specific trophoblast populations, we hypothesized that IL-33 stimulates trophoblasts in a paracrine manner. Indeed, BrdU incorporation assays revealed that recombinant human IL-33 significantly increased proliferation of primary trophoblasts as well as of villous cytotrophoblasts and cell column trophoblasts in placental explant cultures. These effects were fully abolished upon addition of soluble ST2. Interestingly, Western blot and immunofluorescence analyses demonstrated that IL-33 activates AKT and ERK1/2 in primary trophoblasts and placental explants. Inhibitors against PI3K (LY294002) and MEK1/2 (UO126) efficiently blocked IL-33–induced proliferation in all model systems used. In summary, with IL-33, we define for the first time, to our knowledge, a macrophage-derived regulator of placental growth during early pregnancy.
Cell Transplantation | 2011
Steffen M. Zeisberger; Julia C. Schulz; Mario Mairhofer; Peter Ponsaerts; Guy Wouters; Daniel Doerr; Alisa Katsen-Globa; Martin Ehrbar; Jürgen Hescheler; Simon P. Hoerstrup; Andreas H. Zisch; Andrea Kolbus; Heiko Zimmermann
While therapeutic cell transplantations using progenitor cells are increasingly evolving towards phase I and II clinical trials and chemically defined cell culture is established, standardization in biobanking is still in the stage of infancy. In this study, the EU FP6-funded CRYSTAL (CRYo-banking of Stem cells for human Therapeutic AppLication) consortium aimed to validate novel Standard Operating Procedures (SOPs) to perform and validate xeno-free and chemically defined cryopreservation of human progenitor cells and to reduce the amount of the potentially toxic cryoprotectant additive (CPA) dimethyl sulfoxide (DMSO). To achieve this goal, three human adult progenitor and stem cell populations—umbilical cord blood (UCB)-derived erythroid cells (UCB-ECs), UCB-derived endothelial colony forming cells (UCB-ECFCs), and adipose tissue (AT)-derived mesenchymal stromal cells (AT-MSCs)—were cryopreserved in chemically defined medium supplemented with 10% or 5% DMSO. Cell recovery, cell repopulation, and functionality were evaluated postthaw in comparison to cryopreservation in standard fetal bovine serum (FBS)-containing freezing medium. Even with a reduction of the DMSO CPA to 5%, postthaw cell count and viability assays indicated no overall significant difference versus standard cryomedium. Additionally, to compare cellular morphology/membrane integrity and ice crystal formation during cryopreservation, multiphoton laser-scanning cryomicroscopy (cryo-MPLSM) and scanning electron microscopy (SEM) were used. Neither cryo-MPLSM nor SEM indicated differences in membrane integrity for the tested cell populations under various conditions. Moreover, no influence was observed on functional properties of the cells following cryopreservation in chemically defined freezing medium, except for UCB-ECs, which showed a significantly reduced differentiation capacity after cryopreservation in chemically defined medium supplemented with 5% DMSO. In summary, these results demonstrate the feasibility and robustness of standardized xeno-free cryopreservation of different human progenitor cells and encourage their use even more in the field of tissue-engineering and regenerative medicine.
Journal of Biological Chemistry | 2009
Mario Mairhofer; Marianne Steiner; Ulrich Salzer; Rainer Prohaska
The human stomatin-like protein-1 (SLP-1) is a membrane protein with a characteristic bipartite structure containing a stomatin domain and a sterol carrier protein-2 (SCP-2) domain. This structure suggests a role for SLP-1 in sterol/lipid transfer and transport. Because SLP-1 has not been investigated, we first studied the molecular and cell biological characteristics of the expressed protein. We show here that SLP-1 localizes to the late endosomal compartment, like stomatin. Unlike stomatin, SLP-1 does not localize to the plasma membrane. Overexpression of SLP-1 leads to the redistribution of stomatin from the plasma membrane to late endosomes suggesting a complex formation between these proteins. We found that the targeting of SLP-1 to late endosomes is caused by a GYXXΦ (Φ being a bulky, hydrophobic amino acid) sorting signal at the N terminus. Mutation of this signal results in plasma membrane localization. SLP-1 and stomatin co-localize in the late endosomal compartment, they co-immunoprecipitate, thus showing a direct interaction, and they associate with detergent-resistant membranes. In accordance with the proposed lipid transfer function, we show that, under conditions of blocked cholesterol efflux from late endosomes, SLP-1 induces the formation of enlarged, cholesterol-filled, weakly LAMP-2-positive, acidic vesicles in the perinuclear region. This massive cholesterol accumulation clearly depends on the SCP-2 domain of SLP-1, suggesting a role for this domain in cholesterol transfer to late endosomes.
Development | 2014
Christopher Schuster; Michael Mildner; Mario Mairhofer; Wolfgang Bauer; Christian Fiala; Marion Prior; Wolfgang Eppel; Andrea Kolbus; Erwin Tschachler; Georg Stingl; Adelheid Elbe-Bürger
Despite intense efforts, the exact phenotype of the epidermal Langerhans cell (LC) precursors during human ontogeny has not been determined yet. These elusive precursors are believed to migrate into the embryonic skin and to express primitive surface markers, including CD36, but not typical LC markers such as CD1a, CD1c and CD207. The aim of this study was to further characterize the phenotype of LC precursors in human embryonic epidermis and to compare it with that of LCs in healthy adult skin. We found that epidermal leukocytes in first trimester human skin are negative for CD34 and heterogeneous with regard to the expression of CD1c, CD14 and CD36, thus contrasting the phenotypic uniformity of epidermal LCs in adult skin. These data indicate that LC precursors colonize the developing epidermis in an undifferentiated state, where they acquire the definitive LC marker profile with time. Using a human three-dimensional full-thickness skin model to mimic in vivo LC development, we found that FACS-sorted, CD207- cord blood-derived haematopoietic precursor cells resembling foetal LC precursors but not CD14+CD16- blood monocytes integrate into skin equivalents, and without additional exogenous cytokines give rise to cells that morphologically and phenotypically resemble LCs. Overall, it appears that CD14- haematopoietic precursors possess a much higher differentiation potential than CD14+ precursor cells.
Fertility and Sterility | 2011
Wolf Dietrich; Aulona Gaba; Zyhdi Zhegu; Christian Bieglmayer; Mario Mairhofer; Mario Mikula; Walter Tschugguel; Iveta Yotova
OBJECTIVE To clarify, whether uterine endothelial proliferation could be regulated via an autocrine estrogen producing mechanism or direct actions of testosterone. DESIGN In vitro study. SETTING Tertiary care facility. PATIENT(S) Human myometrial tissue obtained from 40 women undergoing hysterectomy without further intrauterine pathology. INTERVENTION(S) Cell culture, proliferation assay and CYP19 activity assay on human myometrial endothelial cells treated with testosterone, estradiol, letrozole, flutamide, PD98059, MG-132 alone or in combination. MAIN OUTCOME MEASURE(S) We analyzed whether aromatase is expressed in human myometrial microvascular endothelial cells (HMMECs) and whether it affects proliferation and converts androgens to estrogens. In addition, we aimed to define whether or not T could have a direct capability to affect HMMEC proliferation. RESULT(S) Using quantitative real-time PCR and Western analysis, primary passage four HMMECs were shown to express low levels of aromatase mRNA and protein, respectively. However, HMMECs were unable to convert radioactively labeled 3∗H-1β-androstenedione to estrogen. Pharmacologic doses of T (10(-6) and 10(-4) M) increased HMMEC proliferation, assessed through a bromodeoxyuridine ELISA. This effect of T on proliferation could not be blocked after pretreatment of cells with the aromatase inhibitor letrozole. In addition, HMMECs were found to express androgen receptors (ARs), and the AR antagonist flutamide abolished T-dependent proliferation. T was shown to increase AR protein levels, which was due to T-dependent receptor stabilization and not activation of gene transcription. CONCLUSION(S) We conclude that myometrial endothelial proliferation is not regulated through myometrial endothelial estrogen production. However, pharmacologic doses of T increase myometrial endothelial proliferation through a receptor-dependent and -stabilizing mechanism.
Biochimica et Biophysica Acta | 2010
Ioannis Sanidas; Vassiliki Kotoula; Eleni Ritou; Jasmijn Daans; Christof Lenz; Mario Mairhofer; Makrina Daniilidou; Andrea Kolbus; Volker Kruft; Peter Ponsaerts; Eleni Nikolakaki
SRPK1, the prototype of the serine/arginine family of kinases, has been implicated in the regulation of multiple cellular processes such as pre-mRNA splicing, chromatin structure, nuclear import and germ cell development. SRPK1a is a much less studied isoform of SRPK1 that contains an extended N-terminal domain and so far has only been detected in human testis. In the present study we show that SRPK1 is the predominant isoform in K562 cells, with the ratio of the two isoforms being critical in determining cell fate. Stable overexpression of SRPK1a induces erythroid differentiation of K562 cells. The induction of globin synthesis was accompanied by a marked decrease in proliferation and a significantly reduced clonogenic potential. Small interfering RNA-mediated down-regulation of SRPK1 in K562 cells results similarly in a decrease in proliferative capacity and induction of globin synthesis. A decreased SRPK1/SRPK1a ratio is also observed upon hemin/DMSO-induced differentiation of K562 cells as well as in normal human erythroid progenitor cells. Mass spectrometric analysis of SRPK1a-associated proteins identified multiple classes of RNA-binding proteins including RNA helicases, heterogeneous nuclear ribonucleoproteins, ribosomal proteins, and mRNA-associated proteins. Several of the SRPK1a-copurifying proteins have been previously identified in ribosomal and pre-ribosomal complexes, thereby suggesting that SRPK1a may play an important role in linking ribosomal assembly and/or function to erythroid differentiation in human leukaemic cells.
PLOS ONE | 2017
Stefanie Rungaldier; Ellen Umlauf; Mario Mairhofer; Ulrich Salzer; Christoph Thiele; Rainer Prohaska
Stomatin is an ancient, widely expressed, oligomeric, monotopic membrane protein that is associated with cholesterol-rich membranes/lipid rafts. It is part of the SPFH superfamily including stomatin-like proteins, prohibitins, flotillin/reggie proteins, bacterial HflK/C proteins and erlins. Biochemical features such as palmitoylation, oligomerization, and hydrophobic “hairpin” structure show similarity to caveolins and other integral scaffolding proteins. Recent structure analyses of the conserved PHB/SPFH domain revealed amino acid residues and subdomains that appear essential for the structure and function of stomatin. To test the significance of these residues and domains, we exchanged or deleted them, expressed respective GFP-tagged mutants, and studied their subcellular localization, molecular dynamics and biochemical properties. We show that stomatin is a cholesterol binding protein and that at least two domains are important for the association with cholesterol-rich membranes. The conserved, prominent coiled-coil domain is necessary for oligomerization, while association with cholesterol-rich membranes is also involved in oligomer formation. FRAP analyses indicate that the C-terminus is the dominant entity for lateral mobility and binding site for the cortical actin cytoskeleton.
Cell Transplantation | 2013
Mario Mairhofer; Julia C. Schulz; M. Parth; U. Beer; Heiko Zimmermann; Andrea Kolbus
Cord blood is regarded as a powerful source for adult stem cells. Cord blood transplants have been used successfully to treat children and adults in autologous and allogeneic settings. Nevertheless, in many cases, the clinically relevant cell number (CD34+ cells and total leukocytes) is a limiting factor. To enable standardized cell banking and future in vitro expansion of adult stem/progenitor cells, elimination of serum, which inevitably differs from lot to lot and donor to donor, is highly desirable. Here, we demonstrate the feasibility of a xeno-free, chemically defined cryopreservation procedure for cord blood-derived cells over a period of 1 year. Cell recoveries with respect to retrieval of clinically relevant CD34+ cells, colony-forming units, and in vitro cultures of erythroid progenitor cells under standardized conditions were analyzed after 1 week or 1 year of cryopreservation and found to be very high and similar to the samples before freezing. The established xeno-free procedure is an important step toward using the full potential of adult stem cells from cord blood, enabling the elimination of serum-derived factors negatively influencing proliferation, differentiation, and survival of hematopoietic stem cells.
PLOS Genetics | 2018
Philipp Velicky; Gudrun Meinhardt; Kerstin Plessl; Sigrid Vondra; Tamara Weiss; Peter Haslinger; Thomas Lendl; Karin Aumayr; Mario Mairhofer; Xiaowei Zhu; Birgit Schütz; Roberta L. Hannibal; Robert Lindau; Beatrix Weil; Jan Ernerudh; Jürgen Neesen; Gerda Egger; Mario Mikula; Clemens Röhrl; Alexander E. Urban; Julie C. Baker; Martin Knöfler; Jürgen Pollheimer
Genome amplification and cellular senescence are commonly associated with pathological processes. While physiological roles for polyploidization and senescence have been described in mouse development, controversy exists over their significance in humans. Here, we describe tetraploidization and senescence as phenomena of normal human placenta development. During pregnancy, placental extravillous trophoblasts (EVTs) invade the pregnant endometrium, termed decidua, to establish an adapted microenvironment required for the developing embryo. This process is critically dependent on continuous cell proliferation and differentiation, which is thought to follow the classical model of cell cycle arrest prior to terminal differentiation. Strikingly, flow cytometry and DNAseq revealed that EVT formation is accompanied with a genome-wide polyploidization, independent of mitotic cycles. DNA replication in these cells was analysed by a fluorescent cell-cycle indicator reporter system, cell cycle marker expression and EdU incorporation. Upon invasion into the decidua, EVTs widely lose their replicative potential and enter a senescent state characterized by high senescence-associated (SA) β-galactosidase activity, induction of a SA secretory phenotype as well as typical metabolic alterations. Furthermore, we show that the shift from endocycle-dependent genome amplification to growth arrest is disturbed in androgenic complete hydatidiform moles (CHM), a hyperplastic pregnancy disorder associated with increased risk of developing choriocarinoma. Senescence is decreased in CHM-EVTs, accompanied by exacerbated endoreduplication and hyperploidy. We propose induction of cellular senescence as a ploidy-limiting mechanism during normal human placentation and unravel a link between excessive polyploidization and reduced senescence in CHM.