Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario Matijašić is active.

Publication


Featured researches published by Mario Matijašić.


Pharmacological Research | 2011

Intensity of macrolide anti-inflammatory activity in J774A.1 cells positively correlates with cellular accumulation and phospholipidosis

Vesna Munić; Mihailo Banjanac; Sanja Koštrun; Krunoslav Nujić; Martina Bosnar; Nikola Marjanović; Jovica Ralić; Mario Matijašić; Mario Hlevnjak; Vesna Eraković Haber

Some macrolide antibiotics were reported to inhibit interleukin-6 (IL6) and prostaglandin-E2 (PGE(2)) production by bacterial lipopolysaccharide (LPS) stimulated J774A.1 cells. Macrolides are also known to accumulate in cells and some were proven inducers of phospholipidosis. In the present study, with a set of 18 mainly 14- and 15-membered macrolides, we have investigated whether these macrolide induced phenomena in J774A.1 cells are connected. In LPS-stimulated J774A.1 cells, the extent of inhibition of proinflammatory markers (IL6 and PGE(2)) by macrolides significantly correlated with their extent of accumulation in cells, as well as with the induction of phospholipidosis, and cytotoxic effects in prolonged culture (with correlation coefficients (R) ranging from 0.78 to 0.93). The effects observed were related to macrolide binding to phospholipids (CHI IAM), number of positively charged centres, and were inversely proportional to the number of hydrogen bond donors. Similar interdependence of effects was obtained with chloroquine and amiodarone, whereas for dexamethasone and indomethacin these effects were not linked. The observed macrolide induced phenomena in J774A.1 cells were reversible and elimination of the macrolides from the culture media prevented phospholipidosis and the development of cytotoxicity in long-term cultures. Based on comparison with known clinical data, we conclude that LPS-stimulated J774A.1 cells in presented experimental setup are not a representative cellular model for the evaluation of macrolide anti-inflammatory potential in clinical trials. Nevertheless, our study shows that, at least in in vitro models, binding to biological membranes may be the crucial factor of macrolide mechanism of action.


International Journal of Molecular Sciences | 2016

Modulating composition and metabolic activity of the gut microbiota in IBD patients

Mario Matijašić; Tomislav Meštrović; Mihaela Perić; Hana Čipčić Paljetak; Marina Panek; Darija Vranešić Bender; Dina Ljubas Kelečić; Željko Krznarić; Donatella Verbanac

The healthy intestine represents a remarkable interface where sterile host tissues come in contact with gut microbiota, in a balanced state of homeostasis. The imbalance of gut homeostasis is associated with the onset of many severe pathological conditions, such as inflammatory bowel disease (IBD), a chronic gastrointestinal disorder increasing in incidence and severely influencing affected individuals. Despite the recent development of next generation sequencing and bioinformatics, the current scientific knowledge of specific triggers and diagnostic markers to improve interventional approaches in IBD is still scarce. In this review we present and discuss currently available and emerging therapeutic options in modulating composition and metabolic activity of gut microbiota in patients affected by IBD. Therapeutic approaches at the microbiota level, such as dietary interventions alone or with probiotics, prebiotics and synbiotics, administration of antibiotics, performing fecal microbiota transplantation (FMT) and the use of nematodes, all represent a promising opportunities towards establishing and maintaining of well-being as well as improving underlying IBD symptoms.


European Journal of Medicinal Chemistry | 2015

Synthesis and structure–activity relationship of amidine derivatives of 3, 4-ethylenedioxythiophene as novel antibacterial agents

Ivana Stolić; Hana Čipčić Paljetak; Mihaela Perić; Mario Matijašić; Višnja Stepanić; Donatella Verbanac; Miroslav Bajić

Current antibacterial chemotherapeutics are facing an alarming increase in bacterial resistance pressuring the search for novel agents that would expand the available therapeutic arsenal against resistant bacterial pathogens. In line with these efforts, a series of 9 amidine derivatives of 3,4-ethylenedioxythiophene were synthesized and, together with 18 previously synthesized analogs, evaluated for their relative DNA binding affinity, in vitro antibacterial activities and preliminary in vitro safety profile. Encouraging antibacterial activity of several subclasses of tested amidine derivatives against Gram-positive (including resistant MRSA, MRSE, VRE strains) and Gram-negative bacterial strains was observed. The bis-phenyl derivatives were the most antibacterially active, while compound 19 from bis-benzimidazole class exhibited the widest spectrum of activity (with MIC of 4, 2, 0.5 and ≤0.25 μg/ml against laboratory strains of Staphyloccocus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Moraxella catarrhalis, respectively and 4-32 μg/ml against clinical isolates of sensitive and resistant S. aureus, Staphylococcus epidermidis and Enterococcus faecium) and also demonstrated the strongest DNA binding affinity (ΔTm of 15.4 °C). Asymmetrically designed compounds and carboxamide-amidines were, in general, less active. Molecular docking indicated that the shape of the 3,4-ethylenedioxythiophene derivatives and their ability to form multiple electrostatic and hydrogen bonds with DNA, corresponds to the binding modes of other minor-groove binders. Herein reported results encourage further investigation of this class of compounds as novel antibacterial DNA binding agents.


Bioorganic & Medicinal Chemistry | 2015

1,2,3-Triazole pharmacophore-based benzofused nitrogen/sulfur heterocycles with potential anti-Moraxella catarrhalis activity.

Silvija Maračić; Tatjana Gazivoda Kraljević; Hana Čipčić Paljetak; Mihaela Perić; Mario Matijašić; Donatella Verbanac; Mario Cetina; Silvana Raić-Malić

Versatile 1,2,3-triazole pharmacophore-based benzofused heterocycles containing halogen-substituted aromatic (9-17 and 25-28), 7-substituted coumarin (18-23 and 29-30) or penciclovir-like subunit (31a,b-38a) were designed and synthesized to evaluate their antibacterial activities against selected Gram-positive and Gram-negative bacteria. Hybridization approach using environmentally friendly Cu(I)-catalyzed click reaction under microwave irradiation was adopted in the synthesis of regioselective 1,4-disubstituted 1,2,3-triazole tethered heterocycles (9-23 and 25-30), while post-N-alkylation of NH-1,2,3-triazoles afforded both 2,4- (31a-38a) and 1,4-disubstituted (31b-33b, 35b-37b) 1,2,3-triazole regioisomers. The compounds 18-23 and 25-30 revealed fluorescence in the violet region of the visible spectrum with a strong influence of phenyl spacer in 25-30 on both wavelength and emission intensity. Fusion of selected subunits led to new hybrid architecture, benzothiazole-1,2,3-triazole-coumarin 29 that demonstrated extremely narrow spectrum activity towards fastidious Gram-negative bacteria Moraxella catarrhalis. Selected hybrid showed the potency against Moraxella catarrhalis (MIC⩽0.25μg/mL) comparable to that of reference antibiotic azithromycin, which suggested that further investigations are necessary to optimize this potential hit compound as a new anti-Moraxella catarrhalis agent.


Pharmacological Research | 2012

Fluorescently labeled macrolides as a tool for monitoring cellular and tissue distribution of azithromycin

Mario Matijašić; Vesna Munić Kos; Krunoslav Nujić; Snježana Čužić; Jasna Padovan; Goran Kragol; Sulejman Alihodžić; Boris Mildner; Donatella Verbanac; Vesna Eraković Haber

Exceptional therapeutic effects of macrolides in treating various infections and inflammatory conditions can be significantly contributed to their unique pharmacokinetic properties. Macrolides accumulate in cells and tissues, with concentrations usually 10 to more than 100 times higher of those measured in plasma. Intracellular distribution of macrolides has so far been examined using extensive subcellular fractionation techniques, radiolabeled compounds and conventional pharmacokinetic methods. In this study we evaluated four fluorescently labeled macrolides on their applicability to monitor azithromycin distribution in vitro and in vivo. 9-Deoxo-9a-{3-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]propyl}-9a-aza-9a-homoerythromycin A (9a-NBD-azithromycin) was selected as a compound with most similar cellular pharmacokinetics to azithromycin. 9a-NBD-azithromycin demonstrated antimicrobial properties comparable to azithromycin, displayed the same biological activity profile in LPS-stimulated J774A.1 murine macrophage cells and, even though it accumulated in cells almost 50% more than azithromycin, it showed same rate of retention. Identical to azithromycin, 9a-NBD-azithromycin was localized in lysosomes of J774A.1 cells. Two hours after 9a-NBD-azithromycin was administered intraperitonally to mice, a strong fluorescent signal was located in kidneys and liver and slightly weaker in the spleen. In kidneys, the signal was concentrated in tubuli, and glomeruli were negative. Patchy florescence in hepatocytes supports lysosomal cellular localization. Weaker staining of white pulp compared to red pulp of spleen is in agreement with lower accumulation of azithromycin in lymphocytes compared to other cell types present. We conclude that 9a-NBD-azithromycin can be used as a fluorescent analog of azithromycin to visualize its distribution in in vitro systems, and is also suitable for in vivo studies.


Bioorganic & Medicinal Chemistry | 2012

An efficient and convenient microwave-assisted chemical synthesis of (thio)xanthones with additional in vitro and in silico characterization.

Donatella Verbanac; Subhash C. Jain; Nidhi Jain; Mahesh Chand; Hana Čipčić Paljetak; Mario Matijašić; Mihaela Perić; Višnja Stepanić; Luciano Saso

Xanthones and their thio-derivatives are a class of pleiotropic compounds with various reported pharmacological and biological activities. Although these activities are mainly determined in laboratory conditions, the class itself has a great potential to be utilized as promising chemical scaffold for the synthesis of new drug candidates. One of the main obstacles in utilization of these compounds was related to the difficulties in their chemical synthesis. Most of the known methods require two steps, and are limited to specific reagents not applicable to a large number of starting materials. In this paper a new and improved method for chemical synthesis of xanthones is presented. By applying a new procedure, we have successfully obtained these compounds with the desired regioselectivity in a shorter reaction time (50s) and with better yield (>80%). Finally, the preliminary in vitro screenings on different bacterial species and cytotoxicity assessment, as well as in silico activity evaluation were performed. The obtained results confirm potential pharmacological use of this class of molecules.


Cell Proliferation | 2006

Spontaneous senescence in the MDA-MB-231 cell line.

Andrea Ćukušić; Milena Ivanković; Nikolina Škrobot; Marina Ferenac; Ivana Gotić; Mario Matijašić; Denis Polančec; Ivica Rubelj

Abstract.  Normal human somatic cells have a limited division potential when they grow in vitro. It is believed that shortening of telomeres, specialized structures at the ends of chromosomes, controls cell growth. When one telomere achieves a critical minimal length, the cell cycle control mechanism recognizes it as DNA damage and causes the cells exit from the cycle in G1‐phase. Because it is not possible to extend telomeres in normal cells, this non‐dividing state is prolonged indefinitely, and is known as cellular senescence. The immortal cell line MDA‐MB‐231 has active telomerase, which prevents telomere shortening and allows cells’ permanent divisions. However, there is a fraction of cells that do not divide over several days in culture as documented for some other tumour cell lines. Combination of methods has made it possible to isolate these non‐growing cells and compare them with the fraction of fast‐growing cells from the same culture. Although the non‐growing fraction contains a significant percentage of typical senescent cells, both fractions have equal telomerase activity and telomere length. In this paper we discuss possible mechanisms that cause the appearance of this non‐growing fraction of cells in cultures of MDA‐MB‐231, which indicate stress and genome instability rather than variation in telomerase activity or telomere shortening to affect individual cells.


Molecules | 2012

Tebrophen—An Old Polyphenol Drug with Anticancer Potential

Ivica Rubelj; Višnja Stepanić; Dubravko Jelić; Nikolina Škrobot Vidaček; Andrea Ćukušić Kalajžić; Milena Ivanković; Krunoslav Nujić; Mario Matijašić; Donatella Verbanac

In vitro high-throughput screening was carried out in order to detect new activities for old drugs and to select compounds for the drug development process comprising new indications. Tebrophen, a known antiviral drug, was found to inhibit activities on inflammation and cancer related targets. In primary screening this semisynthetic halogenated polyphenol was identified to inhibit the activities of kinases ZAP-70 and Lck (IC50 0.34 µM and 16 µM, respectively), as well as hydrolase DPPIV (at 80 µM 41% inhibition). Next, it showed no cytotoxic effects on standard cell lines within 24 h. However, tebrophen slowed propagation of breast cancer (MDA-MB-231), osteosarcoma (U2OS) and cervical carcinoma (HeLa), through at least 35 population doublings in a dose-dependent manner. It completely stopped the division of the prostate cancer (PC3) cell line at 50 µM concentration and the cells entered massive cell death in less than 20 days. On the other hand, tebrophen did not influence the growth of normal fibroblasts. According to the measured oxidative burst and estimated in silico parameters its direct antioxidative ability is limited. The obtained results indicate that tebrophen can be considered a promising lead molecule for generating more soluble derivatives with specific anticancer efficacy.


Scientific Reports | 2018

Methodology challenges in studying human gut microbiota – effects of collection, storage, DNA extraction and next generation sequencing technologies

Marina Panek; Hana Čipčić Paljetak; Anja Barešić; Mihaela Perić; Mario Matijašić; Ivana Lojkić; Darija Vranešić Bender; Željko Krznarić; Donatella Verbanac

The information on microbiota composition in the human gastrointestinal tract predominantly originates from the analyses of human faeces by application of next generation sequencing (NGS). However, the detected composition of the faecal bacterial community can be affected by various factors including experimental design and procedures. This study evaluated the performance of different protocols for collection and storage of faecal samples (native and OMNIgene.GUT system) and bacterial DNA extraction (MP Biomedicals, QIAGEN and MO BIO kits), using two NGS platforms for 16S rRNA gene sequencing (Ilumina MiSeq and Ion Torrent PGM). OMNIgene.GUT proved as a reliable and convenient system for collection and storage of faecal samples although favouring Sutterella genus. MP provided superior DNA yield and quality, MO BIO depleted Gram positive organisms while using QIAGEN with OMNIgene.GUT resulted in greatest variability compared to other two kits. MiSeq and IT platforms in their supplier recommended setups provided comparable reproducibility of donor faecal microbiota. The differences included higher diversity observed with MiSeq and increased capacity of MiSeq to detect Akkermansia muciniphila, [Odoribacteraceae], Erysipelotrichaceae and Ruminococcaceae (primarily Faecalibacterium prausnitzii). The results of our study could assist the investigators using NGS technologies to make informed decisions on appropriate tools for their experimental pipelines.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2016

Synthesis and evaluation of antibacterial and antioxidant activity of novel 2-phenyl-quinoline analogs derivatized at position 4 with aromatically substituted 4H-1,2,4-triazoles

Donatella Verbanac; Ritu Malik; Mahesh Chand; Khushbu Kushwaha; Monika Vashist; Mario Matijašić; Višnja Stepanić; Mihaela Perić; Hana Čipčić Paljetak; Luciano Saso; Subhash C. Jain

Abstract A set of novel quinolone–triazole conjugates (12–31) were synthesized in three steps in good yields starting from 2-phenylquinoline-4-carboxylic acid. All the intermediates, as well as the final 1,2,4-triazolyl quinolines were fully characterized by their detailed spectral analysis utilizing different techniques such as IR, 1H NMR, 13C NMR, and finally mass spectrometry. All the synthesized compounds were evaluated in vitro for their potential antibacterial activity and their preliminary safety profile was assessed through cytotoxicity assay. Additionally, six selected conjugates were evaluated for their antioxidative properties on the basis of density functional theory calculations, using radical scavenging assay (DPPH) and cellular antioxidant assay. The reported results encourage further investigation of selected compounds and are shading light on their potential pharmacological use.

Collaboration


Dive into the Mario Matijašić's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Kunović

University Hospital Centre Zagreb

View shared research outputs
Top Co-Authors

Avatar

Darija Vranešić Bender

University Hospital Centre Zagreb

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge