Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario Mencía is active.

Publication


Featured researches published by Mario Mencía.


Molecular Cell | 1997

Transcription Activation or Repression by Phage Φ29 Protein p4 Depends on the Strength of the RNA Polymerase–Promoter Interactions

María Monsalve; Belén Calles; Mario Mencía; Margarita Salas; Fernando Rojo

Phage psi 29 protein p4 activates the late A3 promoter and represses the early A2c promoter, in both cases by binding upstream from RNA polymerase (RNAP) and interacting with the C-terminal domain of the RNAP alpha subunit. To investigate how this interaction leads to activation at PA3 and to repression at PA2c, mutant promoters were constructed. We show that the position of protein p4 relative to that of RNAP, which is different at each promoter, does not dictate the outcome of the interaction. Rather, in the absence of a-35 consensus box for sigma A-RNAP activation was observed, while in its presence repression occurred. The results support the view that stabilization of RNAP at the promoter over a threshold level leads to repression.


Journal of Biomolecular Screening | 2005

Screening Mutant Libraries of Fungal Laccases in the Presence of Organic Solvents

Miguel Alcalde; Thomas Bulter; Miren Zumárraga; Humberto García-Arellano; Mario Mencía; Francisco J. Plou; Antonio Ballesteros

Reliable screening methods are being demanded by biocatalysts’ engineers, especially when some features such as activity or stability are targets to improve under nonnatural conditions (i.e., in the presence of organic solvents). The current work describes a protocol for the design of a fungal laccase—expressed in Saccharomyces cerevisiae—highly active in organic cosolvents. A high-throughput screening assay based on ABTS (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)) oxidation was validated. The stability of the ABTS radical cation was not significantly altered in the presence of acetonitrile, ethanol, or DMSO. With a coefficient of variance below 10% and a sensitivity limit of 15 pg laccase/μL, the assay was reproducible and sensitive. The expression system of Myceliophthora thermophila laccase variant T2 in S. cerevisiae was highly dependent on the presence of Cu2+. Copper concentration was limited up to 10 μM CuSO4 where expression levels (~14-18 mg/L) were acceptable without compromising the reliability of the assay. A mutant library was created by error-prone PCR with 1.1 to 3.5 mutations per kb. After only 1 generation of directed evolution, mutant 6C9 displayed about 3.5-fold higher activities than parent type in the presence of 20% acetonitrile or 30% ethanol. The method provided here should be generally useful to improve the activity of other redox enzymes in mixtures of water/cosolvents.


The EMBO Journal | 1996

Activation and repression of transcription at two different phage phi29 promoters are mediated by interaction of the same residues of regulatory protein p4 with RNA polymerase

María Monsalve; Mario Mencía; Fernando Rojo; Margarita Salas

This work was supported by Community of Madrid (Grupo Estrategico 2000-2003), NIH, grant R01CA77575, and SAF 2001-2245.The transition step from the p3-dAMP initiation complex to the first elongated products, p3-(dAMP)2 and p3-(dAMP)3, requires a dATP concentration higher than that needed for the initiation reaction or for the further elongation of the p3-(dAMP)3 complex. The elongation in phi 29 DNA-protein p3 replication in vitro was strongly inhibited by salt. Under inhibitory salt concentration, the viral protein p6 greatly stimulated phi 29 DNA-protein p3 replication. The effect of protein p6 was not on the rate of elongation but on the amount of elongated product, stimulating the transition from initiation to formation of the first elongation products.Trabajo presentado en 44th Annual Meeting Society for Neuroscience, celebrado en Washington, DC (USA) del 15 al 19 de noviembre de 2014Recent studies have demonstrated that cytochrome c plays an important role in cell death. In the present study, we report that teniposide and various other chemotherapeutic agents induced a dose-dependent increase in the expression of the mitochondrial respiratory chain proteins cytochrome c, subunits I and IV of cytochrome c oxidase, and the free radical scavenging enzyme manganous superoxide dismutase. The teniposide-induced increase of cytochrome c was inhibited by cycloheximide, indicating new protein synthesis. Elevated cytochrome c levels were associated with enhanced cytochrome c oxidase-dependent oxygen uptake using TMPD/ascorbate as the electron donor, suggesting that the newly synthesized proteins were functional. Cytochrome c was released into the cytoplasm only after maximal levels had been reached in the mitochondria, but there was no concomitant decrease in mitochondrial membrane potential or caspase activation. Our results suggest that the increase in mitochondrial protein expression may play a role in the early cellular defense against anticancer drugs.Supported by Grant GM-08041 from the National Institutes of Health, United States Public Health Service.The results presented in this paper indicate that the phi 29 DNA polymerase is the only enzyme required for efficient synthesis of full length phi 29 DNA with the phi 29 terminal protein, the initiation primer, as the only additional protein requirement. Analysis of phi 29 DNA polymerase activity in various in vitro DNA replication systems indicates that two main reasons are responsible for the efficiency of this minimal system: 1) the phi 29 DNA polymerase is highly processive in the absence of any accessory protein; 2) the polymerase itself is able to produce strand displacement coupled to the polymerization process. Using primed M13 DNA as template, the phi 29 DNA polymerase is able to synthesize DNA chains greater than 70 kilobase pairs. Furthermore, conditions that increase the stability of secondary structure in the template do not affect the processivity and strand displacement ability of the enzyme. Thus, the catalytic properties of the phi 29 DNA polymerase are appropriate for a phi 29 DNA replication mechanism involving two replication origins, strand displacement and continuous synthesis of both strands. The enzymology of phi 29 DNA replication would support a symmetrical model of DNA replication.Aided by grants from the National Institutes of Health U.S. Public Health Service, and E. I. Du Pont de Neumours and Company, Inc.This work was supported in part by NRSA, National Institutes of Health Grants NS09463 and NS32501 and from National Science Foundation Grant 9310965.We have recently developed a new method to detect and characterize single base substitutions in transcribed genes which is based on the ability of RNAse A to recognize and cleave single base mismatches in RNA:RNA heteroduplexes. The RNAse A misrnatch cleavage assay was applied to screen human colon carcinoma cell lines and primary tumors for the presence of mutant e-X-ras oncogenes. We have determined that the mutant e-X-ras allele is overexpressed and amplified relative to the normal in the SX-CO-l human colon carcinoma cell lineo The oncogene mutation has been characterized by this method as a glycine to valine substitution at codon 12 of the e-X-ras gene. This result was confirmed by cloning and sequencing. We have previously reported that about 40% of primary human colon tumors contain e-X-ras genes mutant at codon 12 (Forrester et al, Nature 327: 298, 1987). We report here the characterization by molecular cloning and sequencing of the mutation in the e-X-ras oneogene from two of these tumors (tumors 3 and 28). We also describe the histopathologieal eharaeterization of these two tumors and demonstrate, by Southern blot hybridization of NIH3T3 transformants, the simultaneous presenee of mutant e-X-ras and N-ras oncogenes in villous adenoma 28. Our results provide evidence for the frequent assoeiation of ras somatie mutational aetivation in the early stages of tumor development in this common type of human eaneer.Aided by Grants AM-01845, AM-08953, and l-Sol-FR-05099 from the National Institutes o f Health, United States Public Health Service, and E. I. Du Pont de Nemours and Company, Inc. A preliminary report o f this work was presented at the Second Meeting o f the Federation o f European Biochemical Societies (symposium on “Ribonucleic Acid-Structure and Function”), Vienna, April 21 to 24, 1965.1 pagina.-- Trabajo presentado al: 4th International Meeting on Apicomplexa in Farm Animals. (Madrid, Spain. 11-14 October ,2017).Supported by Grant GM-08041 from the National Institutes of Health, United States Public Health Service.Resumen del trabajo presentado al XXXIII Congreso de la Sociedad Espanola de Bioquimica y Biologia Molecular celebrado en Cordoba del 14 al 17 de septiembre de 2010.This article describes the expression pattern and functional analysis of Lazarillo, a novel cell surface glycoprotein expressed in the embryonic grasshopper nervous system, and a member of the lipocalin family. Lazarillo is expressed by a subset of neuroblasts, ganglion mother cells and neurons of the central nervous system, by all sensory neurons of the peripheral nervous system, and by a subset of neurons of the enteric nervous system. It is also present in a few non neuronal cells associated mainly with the excretory system. A monoclonal antibody raised against Lazarillo perturbs the extent and direction of growth of identified commissural pioneer neurons. We propose that Lazarillo is the receptor for a midline morphogen involved in the outgrowth and guidance of these neurons.Poster presentado al Annual Biomedical Research Conference for Minority Students celebrado en California (US) del 7 al 10 de noviembre de 2012.The phage phi 29 regulatory protein p4 activates the late promoter A3 by stabilizing the binding of Bacillus subtilis RNA polymerase (RNAP) as a closed complex. Interaction between the two proteins occurs through amino acid Arg120 in protein p4 and the C-terminal domain of the RNAP alpha subunit (alpha-CTD). In addition to its role as activator of the late transcription, protein p4 represses early transcription from the A2b and A2c promoters, that are divergently transcribed. Binding of p4 to its recognition site at the A3 promoter displaces the RNAP from promoter A2b, both by steric hindrance and by the curvature induced upon p4 binding. At the A2c promoter, the RNAP cooperates with p4 binding in such a way that promoter clearance is prevented. Interestingly, amino acid Arg120 in p4 and the alpha-CTD in B. subtilis RNAP are involved in the interactions that lead to transcription repression at promoter A2c. To investigate how this interaction leads to activation at PA3 and to repression at PA2c, mutant promoters were constructed. In the absence of a -35 consensus box for sigma A-RNAP activation was observed, while in its presence repression occurred. The results support the idea that overstabilization of RNAP at the promoter over a threshold level leads to repression.Resumen del poster presentado al XXXIII Congreso de la Sociedad Espanola de Bioquimica y Biologia Molecular celebrado en Cordoba del 14 al 17 de septiembre de 2010.Formalin-fixed paraffin-embedded tissue specimens obtained by fine needle aspiration of pancreatic masses from 47 patients were examined retrospectively for cytology and the presence of mutant c-K-ras oncogenes. Point mutations of c-K-ras in codon 12 were detected by RNA-DNA RNAse A mismatch cleavage after in vitro DNA amplification of the cellular c-K-ras sequences by the polymerase chain reaction. Of the 36 patients with pancreatic adenocarcinoma, mutant c-K-ras oncogenes were detected in 18 of 25 (72%) with malignant cytologies, 2 of 8 (25%) with atypical cytologies, and 0 of 3 with benign aspiration cytologies. The remaining 11 patients without pancreatic adenocarcinomas did not have mutant c-K-ras genes detectable by the assay. The diagnosis of pancreatic adenocarcinoma was based upon clinical follow-up. The presence of mutant c-K-ras oncogenes did not significantly affect survival in the patients studied. Mutant c-K-ras genes were found at the time of initial clinical presentation in the majority of pancreatic adenocarcinomas, suggesting an important role of the mutation in oncogenesis. In conjunction with cytology, our approach represents an application for cancer diagnosis at the molecular genetic level.Calorie restriction (CR) has been shown to decrease reactive oxygen species (ROS) production and retard aging in a variety of species. It has been proposed that alterations in membrane saturation are central to these actions of CR. As a step towards testing this theory, mice were assigned to 4 dietary groups (control and 3 CR groups) and fed AIN-93G diets at 95 % (control) or 60 % (CR) of ad libitum for 8 months. To manipulate membrane composition, the primary dietary fats for the CR groups were soybean oil (also used in the control diet), fish oil or lard. Skeletal muscle mitochondrial lipid composition, proton leak, and H(2)O(2) production were measured. Phospholipid fatty acid composition in CR mice was altered in a manner that reflected the n-3 and n-6 fatty acid profiles of their respective dietary lipid sources. Dietary lipid composition did not alter proton leak kinetics between the CR groups. However, the capacity of mitochondrial complex III to produce ROS was decreased in the CR lard compared to the other CR groups. The results of this study indicate that dietary lipid composition can influence ROS production in muscle mitochondria of CR mice. It remains to be determined if lard or other dietary oils can maximize the CR-induced decreases in ROS production.To investigate the relationship between RNA folding and ribozyme catalysis, we have carried out a detailed kinetic analysis of four structural derivatives of the hairpin ribozyme. Optimal and suboptimal (wild-type) substrate sequences were studied in conjunction with stabilization of helix 4, which supports formation of the catalytic core. Pre-steady-state and steady-state kinetic studies strongly support a model in which each of the ribozyme variants partitions between two major conformations leading to active and inactive ribozymez substrate complexes. Reaction rates for cleavage, ligation, and substrate binding to both ribozyme conformations were determined. Ligation rates (3 min 21 ) were typically 15-fold greater than cleavage rates (0.2 min 21 ), demonstrating that the hairpin ribozyme is an efficient RNA ligase. On the other hand, substrate binding is very rapid (k on 5 4 3 10 8 M 21 min 21 ), and the ribozymez substrate complex is very stable (K D < 25 pM ;k off < 0.01 min 21 ). Stabilization of helix 4 increases the proportion of RNA molecules folded into the active conformation, and enhances substrate association and ligation rates. These effects can be explained by stabilization of the catalytic core of the ribozyme. Rigorous consideration of conformational isomers and their intrinsic kinetic properties was necessary for development of a kinetic scheme for the ribozyme-catalyzed reaction.The human integrin VLA (very late activation antigens)-4 (CD49d/CD29), the leukocyte receptor for both the CS-1 region of plasma fibronectin (Fn) and the vascular cell surface adhesion molecule-1 (VCAM-1), also mediates homotypic aggregation upon triggering with specific anti-VLA-4 monoclonal antibody (mAb). Epitope mapping of this integrin on the human B-cell line Ramos, performed with a wide panel of anti-VLA-4 mAb by both cross-competitive cell binding and protease sensitivity assays, revealed the existence of three topographically distinct epitopes on the alpha 4 chain, referred to as epitopes A-C. By testing this panel of anti-VLA-4 mAb for inhibition of cell binding to both a 38-kDa Fn fragment containing CS-1 and to VCAM-1, as well as for induction and inhibition of VLA-4 mediated homotypic cell adhesion, we have found overlapping but different functional properties associated with each epitope. Anti-alpha 4 mAb recognizing epitope B inhibited cell attachment to both Fn and VCAM-1, whereas mAb against epitope A did not block VCAM-1 binding and only partially inhibited binding to Fn. In contrast, mAb directed to epitope C did not affect cell adhesion to either of the two VLA-4 ligands. All mAb directed to site A, as well as a subgroup of mAb recognizing epitope B (called B2), were able to induce cell aggregation, but this effect was not exerted by mAb specific to site C and by a subgroup against epitope B (called B1). Moreover, although anti-epitope C and anti-epitope B1 mAb did not trigger aggregation, those mAb blocked aggregation induced by anti-epitope A or B2 mAb. In addition, anti-epitope A mAb blocked B2-induced aggregation, and conversely, anti-epitope B2 mAb blocked A-induced aggregation. Further evidence for multiple VLA-4 functions is that anti-Fn and anti-VCAM-1 antibodies inhibited binding to Fn or to VCAM-1, respectively, but did not affect VLA-4-mediated aggregation. In summary, we have demonstrated that there are at least three different VLA-4-mediated adhesion functions, we have defined three distinct VLA-4 epitopes, and we have correlated these epitopes with the different functions of VLA-4.Lazarillo, a protein recognized by the monoclonal antibody 10E6, is expressed by a subset of neurons in the developing nervous system of the grasshopper. It is a glycoprotein of 45x10(3) M(r) with internal disulfide bonds and linked to the extracellular side of the plasma membrane by a glycosylphosphatidylinositol moiety. Peptide sequences obtained from affinity purified adult protein were used to identify an embryonic cDNA clone, and in situ hybridizations confirmed that the distribution of the Lazarillo mRNA paralleled that of the monoclonal antibody labeling on embryos. Sequence analysis defines Lazarillo as a member of the lipocalin family, extracellular carriers of small hydrophobic ligands, and most related to the porphyrin- and retinol-binding lipocalins. Lazarillo is the first example of a lipocalin anchored to the plasma membrane, highly glycosylated, and restricted to a subset of developing neurons.Trabajo presentado al Annual Biomedical Research Conference for Minority Students celebrada en Nashville (US) del 13 al 16 de noviembre de 2013.A cDNA has been isolated from human hippocampus that appears to encode a novel Na(+)-dependent, Cl(-)-independent, neutral amino acid transporter. The putative protein, designated SATT, is 529 amino acids long and exhibits significant amino acid sequence identity (39-44%) with mammalian L-glutamate transporters. Expression of SATT cDNA in HeLa cells induced stereospecific uptake of L-serine, L-alanine, and L-threonine that was not inhibited by excess (3 mM) 2-(methylamino)-isobutyric acid, a specific substrate for the System A amino acid transporter. SATT expression in HeLa cells did not induce the transport of radiolabeled L-cysteine, L-glutamate, or related dicarboxylates. Northern blot hybridization revealed high levels of SATT mRNA in human skeletal muscle, pancreas, and brain, intermediate levels in heart, and low levels in liver, placenta, lung, and kidney. SATT transport characteristics are similar to the Na(+)-dependent neutral amino acid transport activity designated System ASC, but important differences are noted. These include: 1) SATTs apparent low expression in ASC-containing tissues such as liver or placenta; 2) the lack of mutual inhibition between serine and cysteine; and 3) the lack of trans-stimulation. SATT may represent one of multiple activities that exhibit System ASC-like transport characteristics in diverse tissues and cell lines.


Molecular Microbiology | 2007

Emergence of novel functions in transcriptional regulators by regression to stem protein types

Teca Calcagno Galvão; Mario Mencía; Víctor de Lorenzo

Evolutionary expansion of metabolic networks entails the emergence of regulatory factors that become sensitive to new chemical species. A dedicated genetic system was developed for the soil bacterium Pseudomonas putida aimed at deciphering the steps involved in the gain of responsiveness of the toluene‐activated prokaryotic regulator XylR to the xenobiotic chemical 2,4 dinitrotoluene (DNT). A mutant library of the A domain of XylR was screened in vivo for those variants activated by DNT through coupling the cognate promoter Pu to the P. putida yeast URA3 homologue, pyrF. All DNT‐responsive clones maintained their sensitivity to ordinary effectors of XylR and broadened the range of inducers to unrelated aromatics. Yet, none of the altered amino acids lay in the recognizable effector binding pocket of the polypeptide. Instead, mutations appeared in protein surfaces believed to engage in the conformational shifts that follow effector binding and modulate signal transmission between XylR domains. It thus seems that transcriptional factors are likely to regress into functionally multipotent forms (i.e. stem protein types) as a first step towards the divergence of a new specificity.


Progress in Nucleic Acid Research and Molecular Biology | 1998

Transcription activation and repression by interaction of a regulator with the alpha subunit of RNA polymerase: the model of phage phi 29 protein p4.

Fernando Rojo; Mario Mencía; María Monsalve; Margarita Salas

Regulatory protein p4, encoded by Bacillus subtilis phage phi 29, has proved to be a very useful model to analyze the molecular mechanisms of transcription regulation. Protein p4 modulates the transcription of phage phi 29 genome by activating the late A3 promoter (PA3) and simultaneously repressing the two main early promoters, A2b and A2c (or PA2b and PA2c). This review describes in detail the regulatory mechanism leading to activation or repression, and discusses them in the context of the recent findings on the role of the RNA polymerase alpha subunit in transcription regulation. Activation of PA3 implies the p4-mediated stabilization of RNA polymerase at the promoter as a closed complex. Repression of the early A2b promoter occurs by binding of protein p4 to a site that partially overlaps the -35 consensus region of the promoter, therefore preventing the binding of RNA polymerase to the promoter. Repression of the A2c promoter, located 96 bp downstream from PA2b, occurs by a different mechanism that implies the simultaneous binding of protein p4 and RNA polymerase to the promoter in such a way that promoter clearance is inhibited. Interestingly, activation of PA3 and repression of PA2c require an interaction between protein p4 and RNA polymerase, and in both cases this interaction occurs between the same surface of protein p4 and the C-terminal domain of the alpha subunit of RNA polymerase, which provides new insights into how a protein can activate or repress transcription by subtle variations in the protein-DNA complexes formed at promoters.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs

Miguel de Vega; José M. Lázaro; Mario Mencía; Luis Blanco; Margarita Salas

Bacteriophage φ29 DNA polymerase is a unique enzyme endowed with two distinctive properties, high processivity and faithful polymerization coupled to strand displacement, that have led to the development of protocols to achieve isothermal amplification of limiting amounts of both circular plasmids and genomic DNA. To enhance the amplification efficiency of φ29 DNA polymerase, we have constructed chimerical DNA polymerases by fusing DNA binding domains to the C terminus of the polymerase. The results show that the addition of Helix-hairpin-Helix [(HhH)2] domains increases DNA binding of the hybrid polymerases without hindering their replication rate. In addition, the chimerical DNA polymerases display an improved and faithful multiply primed DNA amplification proficiency on both circular plasmids and genomic DNA and are unique φ29 DNA polymerase variants with enhanced amplification performance. The reported chimerical DNA polymerases will contribute to make φ29 DNA polymerase-based amplification technologies one of the most powerful tools for genomics.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Functional eukaryotic nuclear localization signals are widespread in terminal proteins of bacteriophages

Modesto Redrejo-Rodríguez; Daniel Muñoz-Espín; Isabel Holguera; Mario Mencía; Margarita Salas

A number of prokaryotic proteins have been shown to contain nuclear localization signals (NLSs), although its biological role remains sometimes unclear. Terminal proteins (TPs) of bacteriophages prime DNA replication and become covalently linked to the genome ends. We predicted NLSs within the TPs of bacteriophages from diverse families and hosts and, indeed, the TPs of Φ29, Nf, PRD1, Bam35, and Cp-1, out of seven TPs tested, were found to localize to the nucleus when expressed in mammalian cells. Detailed analysis of Φ29 TP led us to identify a bona fide NLS within residues 1–37. Importantly, gene delivery into the eukaryotic nucleus is enhanced by the presence of Φ29 TP attached to the 5′ DNA ends. These findings show a common feature of TPs from diverse bacteriophages targeting the eukaryotic nucleus and suggest a possible common function by facilitating the horizontal transfer of genes between prokaryotes and eukaryotes.


Molecular Microbiology | 1996

Transcriptional activator of phage φ29 late promoter: mapping of residues involved in interaction with RNA polymerase and in DNA bending

Mario Mencía; María Monsalve; Margarita Salas; Fernando Rojo

Phage φ29 regulatory protein p4 activates transcription from the late A3 promoter by stabilizing σA‐RNA polymerase at the promoter as a closed complex. Activation requires interaction between both proteins. Protein p4 bends the DNA upon binding. We have performed a detailed mutagenesis study of the carboxyl end of the protein, which is involved in both transcription activation and DNA bending. The results indicate that Arg‐120 is the most critical residue for activation, probably mediating the interaction with RNA polymerase. Several basic residues have been identified, including Arg‐120, that contribute to maintenance of the DNA bending, probably via electrostatic interactions with the DNA backbone. The degree or stability of the induced bend apparently relies on the additive contribution of all basic residues of the carboxyl end of the protein. Therefore, the activation and DNA bending surfaces overlap, and Arg‐120 should interact with both DNA and RNA polymerase. As we show that protein p4 is a dimer in solution, and is bound to DNA as a tetramer, the results suggest a model in which two of the p4 subunits interact with the DNA, bending it, while the other two subunits remain accessible to interact with RNA polymerase.


Biocatalysis and Biotransformation | 2006

Identification of a γ-hexachlorocyclohexane dehydrochlorinase (LinA) variant with improved expression and solubility properties

Mario Mencía; Ana I. Martínez-Ferri; Miguel Alcalde; Víctor de Lorenzo

Under aerobic conditions, the enzyme γ-hexachlorocyclohexane dechlorinase (LinA) from Sphingomonas paucimobilis UT26 catalyses the elimination of chlorine atoms from the molecule of γ-hexachlorocyclohexane (γ-HCH) or lindane, a recalcitrant pesticide that is still widely used. In its native metabolic context, LinA starts the biodegradation process of lindane by transforming γ-HCH to 1,2,4 trichlorobenzene (TCB), a less persistent chemical. In an attempt to generate an improved version of this enzyme to be used in lindane bioremediation schemes, we have run an experimental evolution procedure on LinA, using Escherichia coli as the surrogate host. One round of random mutagenesis and subsequent screening for improved dechlorination in vivo sufficed to yield one mutant enzyme (LinAT10), bearing a single substitution C132R, that displayed a two-fold enhanced expression and three-fold enhanced solubility of the enzyme compared to the wild type protein. This resulted in a biological product with a six-fold increase in dechlorination ability when expressed in E. coli. The potential of this protein and its expression system for in situ bioremediation is discussed.


Molecular Microbiology | 2013

Nuclear and nucleoid localization are independently conserved functions in bacteriophage terminal proteins

Modesto Redrejo-Rodríguez; Daniel Muñoz-Espín; Isabel Holguera; Mario Mencía; Margarita Salas

Bacteriophage terminal proteins (TPs) prime DNA replication and become covalently linked to the DNA 5′‐ends. In addition, they are DNA‐binding proteins that direct early organization of phage DNA replication at the bacterial nucleoid and, unexpectedly, contain nuclear localization signals (NLSs), which localize them to the nucleus when expressed in mammalian cells. In spite of the lack of sequence homology among the phage TPs, these three properties share some common features, suggesting a possible evolutionary common origin of TPs. We show here that NLSs of three different phage TPs, Φ29, PRD1 and Cp‐1, are mapped within the protein region required for nucleoid targeting in bacteria, in agreement with a previously proposed common origin of DNA‐binding domains and NLSs. Furthermore, previously reported point mutants of Φ29 TP with no nuclear localization still can target the bacterial nucleoid, and Cp‐1 TP contains two independent NLSs, only one of them required for nucleoid localization. Altogether, our results show that nucleoid and nucleus localization sequence requirements partially overlap, but they can be uncoupled, suggesting that conservation of both features could have a common origin but, at the same time, they have been independently conserved during evolution.

Collaboration


Dive into the Mario Mencía's collaboration.

Top Co-Authors

Avatar

Margarita Salas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Fernando Rojo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

María Monsalve

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Daniel Muñoz-Espín

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Isabel Holguera

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Modesto Redrejo-Rodríguez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

José M. Lázaro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Miguel de Vega

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Víctor de Lorenzo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Belén Calles

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge