Mario Milman
Florida Atlantic University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mario Milman.
Journal of Approximation Theory | 2005
Georgi E. Karadzhov; Mario Milman
Extending earlier work by Jawerth and Milman, we develop in detail @S^(^p^) and @D^(^p^) methods of extrapolation. As an application we prove general forms of Yanos extrapolation theorem. Applications to logarithmic Sobolev inequalities, integrability of maps of finite distortion and logarithmic Sobolev spaces are given.
Communications in Contemporary Mathematics | 2004
Mario Milman; Evgeniy Pustylnik
Let Ω be an open domain in ℝn, let k∈ℕ,
Journal of Functional Analysis | 2007
Joaquim Martín; Mario Milman; Evgeniy Pustylnik
p\le \frac{n}{k}
Advances in Mathematics | 2010
Joaquim Martín; Mario Milman
. Using a natural extension of the L(p, q) spaces and a new form of the Polya–Szego symmetrization principle, we extend the sharp version of the Sobolev embedding theorem:
Proceedings of the American Mathematical Society | 2006
Joaquim Martín; Mario Milman
W_0^{k, p} (\Omega)\subset L (\frac{np}{n -kp}, p) to the limiting value
Journal of Functional Analysis | 2009
Joaquim Martín; Mario Milman
p =\frac{n}{k}
Journal of Approximation Theory | 1990
Michael Cwikel; Björn Jawerth; Mario Milman
. This result extends a recent result in [3] for the case k=1. More generally, if Y is a r.i. space satisfying some mild conditions, it is shown that
Proceedings of the American Mathematical Society | 2000
Jesús Bastero; Mario Milman; Francisco J. Ruiz
W_0^{k, Y} (\Omega)\subset Y_n (\infty, k) =\{f: t^{-k/n}(f^{\ast\ast} (t)-f^\ast (t))\in Y\}
Advances in Mathematics | 2004
Natan Krugljak; Mario Milman
. Moreover Yn(∞,k) is not larger (and in many cases essentially smaller) than any r.i. space X(Ω) such that
Numerical Functional Analysis and Optimization | 1990
Fernando Cobos; Mario Milman
W_0^{k, Y} (\Omega)\subset X (\Omega)