Mario N. Tamburri
University of Maryland Center for Environmental Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mario N. Tamburri.
Biological Conservation | 2002
Mario N. Tamburri; Kerstin Wasson; Masayasu Matsuda
One of the most important mechanisms for the introduction of aquatic nuisance species is transport in ship ballast waters. Although several ballast tank treatments to prevent transport of aquatic organisms appear promising, all existing approaches will result in significant costs to the shipping industry. This study describes a treatment that can dramatically reduce the survivorship of most organisms found in ballast waters while providing economic benefits to ship owners. Purging of oxygen from ballast tanks with nitrogen was recently found to be a cost-effective technique for reducing corrosion and therefore extending ship life. We tested the tolerance of larvae of known invasive invertebrate species to low levels of oxygen, comparable with those resulting from the anticorrosion treatment, and detected significant levels of mortality. Two separate literature reviews further support the conclusion that few organisms will be able to withstand extended periods of exposure to nitrogen-treated ballast water. This novel deoxygenation technique may therefore have direct benefits to both marine conservation and the shipping industry.
Marine Chemistry | 2000
Mario N. Tamburri; Edward T. Peltzer; Gernot E. Friederich; Izuo Aya; Kenji Yamane; Peter G. Brewer
Before the feasibility of ocean sequestration of anthropogenic carbon dioxide can be evaluated completely, there is a clear need to better understand the potential biological impacts of CO2-enriched (low pH and high pCO2) seawater in regions of proposed disposal. We describe here the first empirical study directly examining animal responses to dissolving CO2 hydrates on the deep-sea floor. Using a remotely operated vehicle (ROV) to conduct experiments within Monterey Canyon, CA, we found that several species (both invertebrate and vertebrate) did not avoid rapidly dissolving flocculent hydrates when attracted by the scent of food. Furthermore, while there were no apparent short-term effects of decreased pH, mobile animals appeared to suffer from respiratory distress due to increased pCO2 when in close proximity to hydrates. Losses of higher organisms as a result of CO2 disposal in the deep-sea may therefore be more extensive than previously predicted from toxicological models. However, the extent of changes to surrounding seawater chemistry, and thus biological impact, is largely dependent on CO2 release method or the type of hydrate formed.
Environmental Science & Technology | 2011
A. Whitman Miller; Melanie Frazier; George Smith; Elgin S. Perry; Gregory M. Ruiz; Mario N. Tamburri
To reduce ballast water-borne aquatic invasions worldwide, the International Maritime Organization and United States Coast Guard have each proposed discharge standards specifying maximum concentrations of living biota that may be released in ships’ ballast water (BW), but these regulations still lack guidance for standardized type approval and compliance testing of treatment systems. Verifying whether BW meets a discharge standard poses significant challenges. Properly treated BW will contain extremely sparse numbers of live organisms, and robust estimates of rare events require extensive sampling efforts. A balance of analytical rigor and practicality is essential to determine the volume of BW that can be reasonably sampled and processed, yet yield accurate live counts. We applied statistical modeling to a range of sample volumes, plankton concentrations, and regulatory scenarios (i.e., levels of type I and type II errors), and calculated the statistical power of each combination to detect noncompliant discharge concentrations. The model expressly addresses the roles of sampling error, BW volume, and burden of proof on the detection of noncompliant discharges in order to establish a rigorous lower limit of sampling volume. The potential effects of recovery errors (i.e., incomplete recovery and detection of live biota) in relation to sample volume are also discussed.
Deep-sea Research Part I-oceanographic Research Papers | 1999
Mario N. Tamburri; James P. Barry
Many deep-sea animals derive part of their nutrition from rare and unpredictable food falls. However, traits that allow organisms inhabiting the sea floor to exploit carrion are poorly understood. We found in laboratory experiments that hagfish (Eptatretus stouti), gastropods (Neptunea amianta) and amphipods (Orchomene obtusus) survived extended periods of starvation, in some cases for more than a year. When exposed to odors emitted from carrion, most individuals of E. stouti and O. obtusus began searching for food within seconds, whereas none responded to the scent of the live prey. In contrast, the slow crawling N. amianta readily consumed carrion but showed no apparent response to any odor solutions tested. Because more motile animals exhibited lower thresholds for response to signal molecules, sensitivity to chemical cues appears related to species mobility. Hagfish were also found to defend carrion from some competitors by releasing slime when feeding. Though varying dramatically in size, morphology, locomotive ability, and phylogeny, these three species all possess traits well suited for a scavenging lifestyle.
Ecological Monographs | 2007
Mario N. Tamburri; Richard K. Zimmer; Cheryl Ann Zimmer
Marine benthic invertebrates living in dense, intraspecific aggregations are important community members because they provide structural habitat for other species. Here, we determined the mechanisms that facilitate gregarious larval settlement and promote group living. Using suspension-feeding oysters (Crassostrea gigas) residing in large assemblages (“reefs”), experiments were conducted under laboratory conditions that simulated critical aspects of natural estuarine habitats. Oyster larvae were attracted to the scent of their conspecific elders. In still-water trials, they moved downward and settled after contacting a waterborne, adult chemical cue. Yet, mortality of larvae placed in the adult pallial cavity was very high (mean of 91.3%). This seeming paradox of larval attraction to adult cannibals was resolved via laboratory flume (2 cm/s and 6 cm/s flows) experiments. Suspension-feeding activity did not significantly affect flow speeds or directions. Moreover, weak (mean of 1.65 mm/s) adult ciliary currents effectively entrained phytoplankton but rarely captured larvae. In fact, only a small percentage (≤4.6%) of settlers was cannibalized in flume trials, even when they passed within 1 mm of the inhalant opening, or “gape” (a narrow slit between two valves). Larvae cued by conspecifics potentially attach to any portion of the shell surface, but there is a low probability that they will land in or near the inhalant opening. On juvenile and adult oysters, for example, the mean ratio of gape to shell surface area was only 0.025. Furthermore, in surveys of juvenile/adult oysters at nine field sites (Hood Canal and eastern Olympic Peninsula, Washington, USA), the gape was ≤5.2% of the total plane surface area of the reef. Thus, an oyster larva settling onto a reef of suspension-feeding adults is unlikely to be cannibalized. Given this low mortality risk at settlement, future fitness payoffs (e.g., improved fertilization success) may drive the evolution of a gregarious settlement cue that promotes group living.
Environmental Science & Technology | 2013
Matthew R. First; Stephanie H. Robbins-Wamsley; Scott C. Riley; Cameron S. Moser; George Smith; Mario N. Tamburri; Lisa A. Drake
Vertical migrations of living organisms and settling of particle-attached organisms lead to uneven distributions of biota at different depths in the water column. In ballast tanks, heterogeneity could lead to different population estimates depending on the portion of the discharge sampled. For example, concentrations of organisms exceeding a discharge standard may not be detected if sampling occurs during periods of the discharge when concentrations are low. To determine the degree of stratification, water from ballast tanks was sampled at two experimental facilities as the tanks were drained after water was held for 1 or 5 days. Living organisms ≥50 μm were counted in discrete segments of the drain (e.g., the first 20 min of the drain operation, the second 20 min interval, etc.), thus representing different strata in the tank. In 1 and 5 day trials at both facilities, concentrations of organisms varied among drain segments, and the patterns of stratification varied among replicate trials. From numerical simulations, the optimal sampling strategy for stratified tanks is to collect multiple time-integrated samples spaced relatively evenly throughout the discharge event.
Biofouling | 2016
Ian C. Davidson; Christopher Scianni; Chad L. Hewitt; Richard A. Everett; Eric R. Holm; Mario N. Tamburri; Gregory M. Ruiz
Abstract Biofouling exerts a frictional and cost penalty on ships and is a direct cause of invasion by marine species. These negative consequences provide a unifying purpose for the maritime industry and biosecurity managers to prevent biofouling accumulation and transfer, but important gaps exist between these sectors. This mini-review examines the approach to assessments of ship biofouling among sectors (industry, biosecurity and marine science) and the implications for existing and emerging management of biofouling. The primary distinctions between industry and biosecurity in assessment of vessels biofouling revolve around the resolution of biological information collected and the specific wetted surface areas of primary concern to each sector. The morphological characteristics of biofouling and their effects on propulsion dynamics are of primary concern to industry, with an almost exclusive focus on the vertical sides and flat bottom of hulls and an emphasis on antifouling and operational performance. In contrast, the identity, biogeography, and ecology of translocated organisms is of highest concern to invasion researchers and biosecurity managers and policymakers, especially as it relates to species with known histories of invasion elsewhere. Current management practices often provide adequate, although not complete, provision for hull surfaces, but niche areas are well known to enhance biosecurity risk. As regulations to prevent invasions emerge in this arena, there is a growing opportunity for industry, biosecurity and academic stakeholders to collaborate and harmonize efforts to assess and manage biofouling of ships that should lead to more comprehensive biofouling solutions that promote industry goals while reducing biosecurity risk and greenhouse gas emissions.
Marine Technology Society Journal | 2011
Mario N. Tamburri; Thomas H. Johengen; Marlin J. Atkinson; Daniel W. H. Schar; Charles Y. Robertson; Heidi Purcell; G. Jason Smith; Alexei I. Pinchuk; Earle Buckley
The Alliance for Coastal Technologies (ACT) has been established to support innovation and to provide the information required to select the most appropriate tools for studying and monitoring coastal and ocean environments. ACT is a consortium of nationally prominent ocean science and technology institutions and experts who provide credible performance data of these technologies through third-party, objective testing. ACT technology verifications include laboratory and field tests over short- and long-term deployments of commercial technologies in diverse environments to provide unequivocal, unbiased confirmation that technologies meet key performance requirements. ACT demonstrations of new technologies validate the technology concept and help eliminate performance problems before operational introduction. ACT’s most recent demonstration of pCO2 sensors is an example of how ACT advances the evolution of ocean observing technologies, in this case to address the critical issue of ocean acidification, and promotes more informed decision making on technology capabilities and choices.
Frontiers in Marine Science | 2017
Maxime M. Grand; Geraldine S. Clinton-Bailey; Alexander D. Beaton; Allison M. Schaap; Thomas H. Johengen; Mario N. Tamburri; Douglas P. Connelly; Matthew C. Mowlem; Eric P. Achterberg
The development of phosphate sensors suitable for long-term in situ deployments in natural waters, is essential to improve our understanding of the distribution, fluxes and biogeochemical role of this key nutrient in a changing ocean. Here, we describe the optimization of the molybdenum blue method for in situ work using a lab-on-chip analyzer and evaluate its performance in the laboratory and at two contrasting field sites. The in situ performance of the LOC sensor is evaluated using hourly time-series data from a 56-day trial in Southampton Water (UK), as well as a month-long deployment in the subtropical oligotrophic waters of Kaneohe Bay (Hawaii, USA). In Kaneohe Bay, where phosphate concentrations were characteristic of the dry season (0.13 ± 0.03 M, n=704), the in situ sensor accuracy was 16 ± 12 % and a potential diurnal cycle in phosphate concentrations was observed. In Southampton Water, the sensor data (1.02 ± 0.40 µM, n=1267) were accurate to ± 0.10 µM relative to discrete reference samples. Hourly in situ monitoring revealed striking tidal and storm derived fluctuations in phosphate concentrations in Southampton Water that would not have been captured via discrete sampling. We show the impact of storms on phosphate concentrations in Southampton Water is modulated by the spring-neap tidal cycle and that the tenfold decline in phosphate concentrations observed during the later stages of the deployment was consistent with the timing of a spring phytoplankton bloom in the English Channel. Under controlled laboratory conditions in a 250 L tank, the sensor demonstrated an accuracy and precision better than 10 % irrespective of the salinity (0-30), turbidity (0-100 NTU), dissolved organic carbon concentration (0-10 mg/L) and temperature (5-20C) of the water (0.3-13 M phosphate) being analyzed. This work demonstrates that the LOC technology is mature enough to quantify the influence of stochastic events on nutrient budgets and to elucidate the role of phosphate in regulating phytoplankton productivity and community composition in estuarine and coastal regimes.
Water Science and Technology | 2014
Amity G. Zimmer-Faust; Richard F. Ambrose; Mario N. Tamburri
With the maturation and certification of several ballast water management systems that employ chlorine as biocide to prevent the spread of invasive species, there is a clear need for accurate and reliable total residual oxidants (TRO) technology to monitor treatment dose and assure the environmental safety of treated water discharged from ships. In this study, instruments used to measure TRO in wastewater and drinking water applications were evaluated for their performance in scenarios mimicking a ballast water treatment application (e.g., diverse hold times, temperatures, and salinities). Parameters chosen for testing these technologies in the past do not reflect conditions expected during ballast water treatment. Salinity, temperature, and oxidant concentration all influenced the response of amperometric sensors. Oxidation reduction potential (ORP) sensors performed more consistently than amperometric sensors under different conditions but it may be difficult to correlate ORP and TRO measurements for the multitude of biogeochemical conditions found naturally in ballast water. N,N-diethyl-p-phenylenediamine (DPD) analyzers and amperometric sensors were also tested under intermittent sampling conditions mimicking a ballasting scenario, with cyclical dosage and discharge operations. When sampling was intermittent, amperometric sensors required excessive response and conditioning times, whereas DPD analyzers provided reasonable estimates of TRO under the ballasting scenario.