Mario Nachbar
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mario Nachbar.
Journal of Geophysical Research | 2016
Mario Nachbar; Denis Duft; Tp Mangan; Juan Carlos Gómez Martín; John M. C. Plane; Thomas Leisner
Clouds of CO2 ice particles have been observed in the Martian mesosphere. These clouds are believed to be formed through heterogeneous nucleation of CO2 on nanometer-sized meteoric smoke particles (MSPs) or upward propagated Martian dust particles (MDPs). Large uncertainties still exist in parameterizing the microphysical formation process of these clouds as key physicochemical parameters are not well known. We present measurements on the nucleation and growth of CO2 ice on sub-4 nm radius iron oxide and silica particles representing MSPs at conditions close to the mesosphere of Mars. For both particle materials we determine the desorption energy of CO2 to be ΔFdes = (18.5 ± 0.2) kJ mol−1 corresponding to ΔFdes = (0.192 ± 0.002) eV and obtain m = 0.78 ± 0.02 for the contact parameter that governs heterogeneous nucleation by analyzing the measurements using classical heterogeneous nucleation theory. We did not find any temperature dependence for the contact parameter in the temperature range examined (64 K to 73 K). By applying these values for MSPs in the Martian mesosphere, we derive characteristic temperatures for the onset of CO2 ice nucleation, which are 8–18 K below the CO2 frost point temperature, depending on particle size. This is in line with the occurrence of highly supersaturated conditions extending to 20 K below frost point temperature without the observation of clouds. Moreover, the sticking coefficient of CO2 on solid CO2 was determined to be near unity. We further argue that the same parameters can be applied to CO2 nucleation on upward propagated MDPs.
Aerosol Science and Technology | 2015
Denis Duft; Mario Nachbar; Markus Eritt; Thomas Leisner
We present and characterize a versatile device for studying the controlled interaction of free nanoparticles with supersaturated vapors. It utilizes an rf-ion trap for storing a cloud (>108 particles) of singly charged nanoparticles in the sub 10-nm size regime and combines it with a static supersaturation chamber operating at low pressure in free molecular flow regime. This allows for the stable production of a homogeneous zone of variable saturation that can reach very high levels of supersaturation (S > 104). Compared with diffusion chambers, much higher saturations and more homogeneous saturation fields can be achieved, and convective flow is not an issue. The analysis of adsorption and nucleation processes on the surface of nanoparticles can be performed by mass spectrometry and optical spectroscopy. We discuss the general function principle of the device and demonstrate that it is well suited for studying water adsorption and deposition ice nucleation on metal oxide nanoparticles under the conditions of the upper atmosphere of the Earth and Mars. Copyright 2015 American Association for Aerosol Research
Zeitschrift für Physikalische Chemie | 2018
Mario Nachbar; Denis Duft; Alexei Kiselev; Thomas Leisner
Abstract The article reports on the composition, mixing state and water affinity of iron silicate particles which were produced in a non-thermal low-pressure microwave plasma reactor. The particles are intended to be used as meteoric smoke particle analogues. We used the organometallic precursors ferrocene (Fe(C5H5)2) and tetraethyl orthosilicate (TEOS, Si(OC2H5)4) in various mixing ratios to produce nanoparticles with radii between 1 nm and 4 nm. The nanoparticles were deposited on sample grids and their stoichiometric composition was analyzed in an electron microscope using energy dispersive X-ray spectroscopy (EDS). We show that the pure silicon oxide and iron oxide particles consist of SiO2 and Fe2O3, respectively. For Fe:(Fe+Si) ratios between 0.2 and 0.8 our reactor produces (in contrast to other particle sources) mixed iron silicates with a stoichiometric composition according to FexSi(1−x)O3 (0≤x≤1). This indicates that the particles are formed by polymerization of FeO3 and SiO3 and that rearrangement to the more stable silicates ferrosilite (FeSiO3) and fayalite (Fe2SiO4) does not occur at these conditions. To investigate the internal mixing state of the particles, the H2O surface desorption energy of the particles was measured. We found that the nanoparticles are internally mixed and that differential coating resulting in a core-shell structure does not occur.
Journal of Physical Chemistry B | 2018
Mario Nachbar; Denis Duft; Thomas Leisner
Amorphous solid water is probably the most abundant form of solid water in the universe. Its saturation vapor pressure and thermodynamic properties, however, are not well known. We have investigated the saturation vapor pressure over vapor-deposited amorphous ice at temperatures between 133 and 147 K using a novel experimental method. The new method determines the absolute vapor pressures and the sublimation rates by measuring the mass growth rates of ice-covered nanoparticles under supersaturated water vapor conditions. We find that the vapor pressure of amorphous solid water is up to a factor of 3 higher than that predicted by current parameterizations, which are based in part on calorimetric measurements. We demonstrate that the calorimetric measurements can be reconciled with our data by acknowledging the formation of nanocrystalline ice as an intermediate ice phase during the crystallization of amorphous ice. As a result, we propose a new value for the enthalpy of crystallization of amorphous solid water of Δ H = 2312 ± 227 J/mol, which is about 1000 J/mol higher than the current consensus. Our results shine a new light on the abundance of water ice clouds on Mars and mesospheric clouds on Earth and may alter our understanding of ice formation in the stratosphere.
Atmospheric Chemistry and Physics | 2013
Rolf Weller; Ingeborg Levin; Dominik Schmithüsen; Mario Nachbar; Jölund Asseng; Dietmar Wagenbach
Journal of Geophysical Research | 2016
Mario Nachbar; Denis Duft; Tp Mangan; Juan Carlos Gómez Martín; John M. C. Plane; Thomas Leisner
Proceedings of the 65th ASMS Conference on Mass Spectrometry and Allied Topics, Indianapolis, IN, June 4-8, 2017 | 2017
Denis Duft; Mario Nachbar; Thomas Dresch; Thomas Leisner
European geosciences union general assembly | 2017
Mario Nachbar; Denis Duft; Henrike Wilms; Kensei Kitajima; Thomas Leisner
European Planetary Science Congress 2017, Riga, LV, September 17-22, 2017 | 2017
Mario Nachbar; Denis Duft; Thomas Leisner
European Planetary Science Congress 2017, Riga, LV, 17–22 September 2017 | 2017
Mario Nachbar; Denis Duft; Thomas Leisner