Mario Plaas
University of Tartu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mario Plaas.
The Journal of Comparative Neurology | 2008
Hendrik Luuk; Sulev Kõks; Mario Plaas; Jens Hannibal; Jens F. Rehfeld; Eero Vasar
Mutations in the coding region of the WFS1 gene cause Wolfram syndrome, a rare multisystem neurodegenerative disorder of autosomal recessive inheritance. Patients with Wolfram syndrome display considerable clinical pleiomorphism, and symptoms such as neurological complications and psychiatric disorders are common. In the present study we have characterized Wfs1 expression pattern in the mouse central nervous system by using a combination of immunohistochemistry on wild‐type mice and X‐Gal staining of Wfs1 knockout mice with targeted insertion of the lacZ reporter. We identified a robust enrichment of Wfs1 protein in the central extended amygdala and ventral striatum. Prominent Wfs1 expression was seen in the hippocampal CA1 region, parasubiculum, superficial part of the second and third layers of the prefrontal cortex and proisocortical areas, hypothalamic magnocellular neurosecretory system, and central auditory pathway. Wfs1 expression was also detected in numerous brainstem nuclei and in laminae VIII and IX of the spinal cord. Wfs1‐positive nerve fibers were found in the medial forebrain bundle, reticular part of the substantia nigra, globus pallidus, posterior caudate putamen, lateral lemniscus, alveus, fimbria, dorsal hippocampal commissure, subiculum, and to a lesser extent in the central sublenticular extended amygdala, compact part of substantia nigra, and ventral tegmental area. The neuroanatomical findings suggest that the lack of Wfs1 protein function can be related to several neurological and psychiatric symptoms found in Wolfram syndrome. Enrichment of Wfs1 protein in the central extended amygdala suggests a role in the modulation of anxiety and fear. J. Comp. Neurol. 509:642–660, 2008.
Behavioural Brain Research | 2009
Hendrik Luuk; Mario Plaas; Sirli Raud; Jürgen Innos; Silva Sütt; Helena Lasner; Urho Abramov; Kaido Kurrikoff; Sulev Kõks; Eero Vasar
Wfs1-deficient mice were generated by disrupting the 8th exon of Wfs1 gene. Reproduction rates of homozygous Wfs1-deficient mice were slightly below the expected values, they displayed intolerance to glucose and overall lower body weight. The present behavioural study was performed in female Wfs1-deficient mice due to their milder metabolic disturbances. Non-fasting blood glucose levels did not differ between homozygous Wfs1-deficient mice and wild-type littermates. While there was no difference in baseline plasma corticosterone, exposure to stress induced a nearly three-fold elevation of corticosterone in Wfs1-deficient mice in relation to wild-type littermates. Wfs1-deficient mice did not display obvious shortcomings in sensory and motor functioning as exemplified by intact responses in conditioned learning paradigms and rota-rod test. Locomotor activity of Wfs1-deficient mice was significantly lower only in brightly lit environment. Short-term isolation had a significant anxiogenic-like effect on the behaviour of Wfs1-deficient mice in dark/light exploration test. Lower exploratory activity of Wfs1-deficient mice in the plus-maze was antagonised by pre-treatment with diazepam (1 mg/kg), a GABA(A) receptor agonist. Wfs1-deficient mice displayed increased anxiety-like behaviour in hyponeophagia test. The locomotor stimulatory effects of amphetamine (2.5-7.5 mg/kg) and apomorphine (3 mg/kg) were significantly attenuated and facilitated, respectively, in Wfs1-deficient mice. There were no differences between Wfs1-deficient mice and wild-types in forced swimming behaviour and conditioned fear responses. Subtle impairments in reversal learning were apparent in Wfs1-deficient mice in the Morris water maze. Altogether, the present study demonstrates impaired behavioural adaptation of Wfs1-deficient mice in stress-inducing situations. It is likely that Wfs1 protein plays a major role in the behavioural adaptation mechanisms to novel and stressful environments.
Neuroscience Letters | 2009
Sirli Raud; Silva Sütt; Hendrik Luuk; Mario Plaas; Jürgen Innos; Sulev Kõks; Eero Vasar
Mutations in the coding region of the WFS1 gene cause Wolfram syndrome, a rare multisystem neurodegenerative disorder of autosomal recessive inheritance. In clinical studies a relation between mutations in the Wfs1 gene and increased susceptibility for mood disorders has been established. According to our previous studies, mice lacking Wfs1 gene displayed increased anxiety in stressful environment. As the GABA-ergic system plays a significant role in the regulation of anxiety, we analyzed the expression of GABA-related genes in the forebrain structures of wild-type and Wfs1-deficient mice. Experimentally naïve Wfs1-deficient animals displayed a significant down-regulation of alpha1 (Gabra1) and alpha2 (Gabra2) subunits of GABA(A) receptors in the temporal lobe and frontal cortex. Exposure of wild-type mice to the elevated plus-maze decreased levels of Gabra1 and Gabra2 genes in the temporal lobe. A similar tendency was also established in the frontal cortex of wild-type animals exposed to behavioral test. In Wfs1-deficient mice the elevated plus-maze exposure did not induce further changes in the expression of Gabra1 and Gabra2 genes. By contrast, the expression of Gad1 and Gad2 genes, enzymes responsible for the synthesis of GABA, was not significantly affected by the exposure of mice to the elevated plus-maze or by the invalidation of Wfs1 gene. Altogether, the present study demonstrates that increased anxiety of Wfs1-deficient mice is probably linked to reduced expression of Gabra1 and Gabra2 genes in the frontal cortex and temporal lobe.
Gene Expression Patterns | 2003
Tambet Tõnissoo; Riho Meier; Kaia Talts; Mario Plaas; Alar Karis
Recent biochemical studies revealed that ric-8A encodes a guanine nucleotide exchange factor for a subset of Galpha proteins. Ric-8 is a key component of a signaling network in C. elegans that regulates neurotransmitter secretion and also plays a role in centrosome-mediated events during early embryogenesis. Here we show that during the early development in mice (E9.5-E12.0) ric-8 (synembryn) is expressed in the developing nervous system such as the cranial ganglia, neural tube, sympathetic chain and dorsal root ganglia. Ric-8 is also found in the lens, vomeronasal organ, and endolymphatic sac. In adult brain, it is expressed in the neocortex, hippocampus, and cerebellum as well as in the pineal gland and ependymal layer.
Behavioural Brain Research | 2006
Tambet Tõnissoo; Sulev Kõks; Riho Meier; Sirli Raud; Mario Plaas; Eero Vasar; Alar Karis
Ric-8 is a guanine nucleotide exchange factor for a subset of Galpha proteins and it is required to maintain Galpha(q) and the Galpha(s) pathways in functional state. In adult mice Ric-8 is expressed in regions involved in the regulation of behavior (neocortex, cingulate cortex and hippocampus). As Ric-8 is shown to regulate neuronal transmitter release, the aim of present study was to perform behavioral analysis of ric-8 mutant. Homozygous (-/-) ric-8 mutant mice are not viable and die in early embryonic development, therefore for behavioral analysis heterozygous (+/-) ric-8 mutant mice were used. We found decreased anxiety of ric-8 heterozygous mice in light-dark compartment test where mutant mice significantly avoided the light compartment. In spatial learning paradigm (Morris water maze) the performance of ric-8 (+/-) mice was impaired. Namely, in the reversal test, ric-8 (+/-) mice exhibited significant delay to find the hidden platform compared to wild-type (wt) littermates. We did not find differences in the behavioral tests reflecting the motor abilities of mice (motor activity, rota-rod). Therefore, described alterations seem to be specific for anxiety and spatial learning. Based on these results we can conclude the importance of ric-8 in the regulation of memory and emotional behavior.
Behavioural Brain Research | 2011
Jürgen Innos; Mari-Anne Philips; Este Leidmaa; Indrek Heinla; Sirli Raud; Paula Reemann; Mario Plaas; Kaarel Nurk; Kaido Kurrikoff; Vallo Matto; Tanel Visnapuu; Paavo Mardi; Sulev Kõks; Eero Vasar
In rodents, the Lsamp gene has been implicated in trait anxiety, fear reaction and fear conditioning. Human data link the LSAMP gene to several psychiatric disorders. In this study, we presented a general phenotypic characterization of Lsamp gene-deficient mouse line, created by deleting exon 1b. These mice displayed no gross sensory-motor deficiencies, no overt abnormalities and performed normally in memory and learning tests. However, they responded with increased activity to new environments. Moreover, they displayed reduced anxiety and notable deviations in social behaviour, such as lack of whisker trimming, reduced aggressiveness and reduced dominance. One possible explanation for the anxiolytic-like effect of the deletion of the Lsamp gene is a shift in balance in the Gabra1 and Gabra2 genes in the temporal lobe in favor of the Gabra2 transcript, encoding α2 subunit of GABA(A) receptors that mediate the stimulating effect of GABA agonists. The overall phenotype of Lsamp-deficient mice, characterized by decreased anxiety and several alterations in social behaviour, makes them a good model for studying the molecular mechanisms behind inadequate social behaviours observed in several psychiatric disorders.
Cellular Immunology | 2012
Tiit Örd; Daima Örd; Sulev Kuuse; Mario Plaas; Tõnis Örd
Mast cells are the principal effectors of IgE-mediated immune responses, including allergic reactions. Tribbles homolog 3 (Trib3) encodes a pseudokinase implicated in the cellular stress response and has been linked to inflammation in certain situations. Here we report the role of Trib3 in mouse bone marrow-derived mast cells (BMMCs). Our results show that Trib3 mRNA expression in BMMCs is positively regulated by the growth factor interleukin (IL)-3. BMMCs originating from Trib3 knockout mice demonstrate unaltered differentiation kinetics and cell surface expression of mast cell markers. When challenged with transient IL-3 deprivation, Trib3-deficient BMMCs display delayed recovery, and during prolonged IL-3 starvation, cell death is accelerated in Trib3-null cultures. IgE-dependent and pharmacologically induced degranulation is impaired in Trib3-deficient BMMCs, as is activation-induced cytokine mRNA expression. Thus, Trib3 contributes to the survival and activity of primary cultured mast cells, which suggests a role for Trib3 in the modulation of the immune response.
Physiological Genomics | 2009
Sulev Kõks; Ursel Soomets; Jose Luis Paya-Cano; Cathy Fernandes; Hendrik Luuk; Mario Plaas; Anton Terasmaa; Vallo Tillmann; Klari Noormets; Eero Vasar; Leonard C. Schalkwyk
The aim of present study was to describe changes in gene expression in the temporal lobe of mice induced by deletion of the Wfs1 gene. Temporal lobes samples were analyzed using Affymetrix Mouse Genome 420 2 GeneChips and expression profiles were functionally annotated with GSEA and Ingenuity Pathway Analysis. We found that Wfs1 mutant mice are significantly smaller (20.9 +/- 1.6 g) than their wild-type counterparts (31.0 +/- 0.6 g, P < 0.0001). This difference existed in 129S6 and C57B6 backgrounds. Interestingly, microarray analysis identified upregulation of growth hormone (GH) transcripts and functional analysis revealed activation of GH pathways. In line with microarray data, the level of IGF-1 in the plasma of Wfs1 mutant mice was significantly increased (P < 0.05). Thus, Wfs1 deletion induces growth retardation, whereas the GH pathway is activated. To test the interaction between the Wfs1 deletion and genomic background, mutant mice were backcrossed to two different genetic backgrounds. In line with previous studies, an interaction between a gene knockout and genetic background was found in gene expression profiles in the congenic region. However, genetic background did not alter the effect of the Wfs1 mutation on either body weight or GH pathway activation. Further studies are needed to describe biochemical and molecular changes of the growth hormone axis as well as in other hormones to clarify their role in growth retardation in the Wfs1 mutant mice.
Behavioural Brain Research | 2013
Tanel Visnapuu; Mario Plaas; Riin Reimets; Sirli Raud; Anton Terasmaa; Sulev Kõks; Silva Sütt; Hendrik Luuk; Christian Ansgar Hundahl; Kattri-Liis Eskla; Alina Altpere; Aet Alttoa; Jaanus Harro; Eero Vasar
Immunohistological studies suggest abundant expression of Wfs1 protein in neurons and nerve fibers that lie in the vicinity of dopaminergic (DA-ergic) fibers and neurons. Therefore, we sought to characterize the function of DA-ergic system in Wfs1-deficient mice. In wild-type mice, amphetamine, an indirect agonist of DA, caused significant hyperlocomotion and increase in tissue DA levels in the dorsal and ventral striatum. Both effects of amphetamine were significantly blunted in homozygous Wfs1-deficient mice. Motor stimulation caused by apomorphine, a direct DA receptor agonist, was somewhat stronger in Wfs1-deficient mice compared to their wild-type littermates. However, apomorphine caused a similar reduction in levels of DA metabolites (3,4-dihydroxyphenylacetic acid and homovanillic acid) in the dorsal and ventral striatum in all genotypes. Behavioral sensitization to repeated treatment with amphetamine (2.5 mg/kg) was observed in wild-type, but not in Wfs1-deficient mice. The expression of DA transporter gene (Dat) mRNA was significantly lower in the midbrain of male and female homozygous mice compared to wild-type littermates. Altogether, the blunted effects of amphetamine and the reduced gene expression of DA transporter are probably indicative of an impaired functioning of the DA-ergic system in Wfs1-deficient mice.
Behavioural Brain Research | 2010
Mari-Anne Philips; Urho Abramov; Kersti Lilleväli; Hendrik Luuk; Kaido Kurrikoff; Sirli Raud; Mario Plaas; Jürgen Innos; Sulev Kõks; Eero Vasar
Myg1 (Melanocyte proliferating gene 1) is a highly conserved and ubiquitously expressed gene, which encodes a protein with mitochondrial and nuclear localization. In the current study we demonstrate a gradual decline of Myg1 expression during the postnatal development of the mouse brain that suggests relevance for Myg1 in developmental processes. To study the effects of Myg1 loss-of-function, we created Myg1-deficient (-/-) mice by displacing the entire coding sequence of the gene. Initial phenotyping, covering a multitude of behavioural, cognitive, neurological, physiological and stress-related responses, revealed that homozygous Myg1 (-/-) mice are vital, fertile and display no gross abnormalities. Myg1 (-/-) mice showed an inconsistent pattern of altered anxiety-like behaviour in different tests. The plus-maze and social interaction tests revealed that male Myg1 (-/-) mice were significantly less anxious than their wild-type littermates; female (-/-) mice showed increased anxiety in the locomotor activity arena. Restraint-stress significantly reduced the expression of the Myg1 gene in the prefrontal cortex of female wild-type mice and restrained female (-/-) mice showed a blunted corticosterone response, suggesting involvement of Myg1 in stress-induced responses. The main finding of the present study was that Myg1 invalidation decreases several behavioural differences between male and female animals that were obvious in wild-type mice, indicating that Myg1 contributes to the expression of sex-dependent behavioural differences in mice. Taken together, we provide evidence for the involvement of Myg1 in anxiety- and stress-related responses and suggest that Myg1 contributes to the expression of sex-dependent behavioural differences.