Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario R. Capecchi is active.

Publication


Featured researches published by Mario R. Capecchi.


Cell | 1987

Site-Directed Mutagenesis by Gene Targeting in Mouse Embryo-Derived Stem Cells

Kirk R. Thomas; Mario R. Capecchi

We mutated, by gene targeting, the endogenous hypoxanthine phosphoribosyl transferase (HPRT) gene in mouse embryo-derived stem (ES) cells. A specialized construct of the neomycin resistance (neor) gene was introduced into an exon of a cloned fragment of the Hprt gene and used to transfect ES cells. Among the G418r colonies, 1/1000 were also resistant to the base analog 6-thioguanine (6-TG). The G418r, 6-TGr cells were all shown to be Hprt- as the result of homologous recombination with the exogenous, neor-containing, Hprt sequences. We have compared the gene-targeting efficiencies of two classes of neor-Hprt recombinant vectors: those that replace the endogenous sequence with the exogenous sequence and those that insert the exogenous sequence into the endogenous sequence. The targeting efficiencies of both classes of vectors are strongly dependent upon the extent of homology between exogenous and endogenous sequences. The protocol described herein should be useful for targeting mutations into any gene.


Cell | 1980

High efficiency transformation by direct microinjection of DNA into cultured mammalian cells.

Mario R. Capecchi

Direct microinjection of DNA by glass micropipettes was used to introduce the Herpes simplex virus thymidine kinase gene into cultured mammalian cells. When DNA was delivered directly into the nuclei of LMTK-, a mouse cell line deficient in thymidine kinase activity, 50--100% of the cells expressed TK enzymatic activity. In contrast, no TK activity could be detected when the DNA was injected into the cytoplasm. The number of injected LMTK- cells capable of indefinite growth in a TK+ selective medium (that is, transformants) depended on the nature of the plasmid DNA into which the HSV-TK gene was inserted. One cell in 500-1000 cells which received nuclear injections with pBR322/TK DNA gave rise to a viable colony when grown in HAT medium (that is, a TK+ selective medium). The transformation frequency increased to one in five injected cells when specific SV40 DNA sequences were also introduced into the HSV-TK plasmid. With the microinjection procedure transformation frequency was relatively insensitive to DNA concentration and did not depend on co-injecting with a carrier DNA. Most of the transformants were stable in nonselective medium as soon as they could be tested.


Nature Genetics | 2008

Bmi1 is expressed in vivo in intestinal stem cells

Eugenio Sangiorgi; Mario R. Capecchi

Bmi1 plays an essential part in the self-renewal of hematopoietic and neural stem cells. To investigate its role in other adult stem cell populations, we generated a mouse expressing a tamoxifen-inducible Cre from the Bmi1 locus. We found that Bmi1 is expressed in discrete cells located near the bottom of crypts in the small intestine, predominantly four cells above the base of the crypt (+4 position). Over time, these cells proliferate, expand, self-renew and give rise to all the differentiated cell lineages of the small intestine epithelium. The induction of a stable form of β-catenin in these cells was sufficient to rapidly generate adenomas. Moreover, ablation of Bmi1+ cells using a Rosa26 conditional allele, expressing diphtheria toxin, led to crypt loss. These experiments identify Bmi1 as an intestinal stem cell marker in vivo. Unexpectedly, the distribution of Bmi1-expressing stem cells along the length of the small intestine suggested that mammals use more than one molecularly distinguishable adult stem cell subpopulation to maintain organ homeostasis.


Trends in Genetics | 1989

The new mouse genetics: Altering the genome by gene targeting

Mario R. Capecchi

Gene targeting (homologous recombination between DNA sequences residing in the chromosome and newly introduced DNA sequences) in pluripotent, mouse embryo-derived stem (ES) cells promises to provide the means to generate mice of any desired genotype. This review describes some of the background and current advances of gene targeting in mouse ES cells.


Nature Genetics | 2004

The Knockout Mouse Project

Christopher P. Austin; James F. Battey; Allan Bradley; Maja Bucan; Mario R. Capecchi; Francis S. Collins; William F. Dove; Geoffrey M. Duyk; Susan M. Dymecki; Janan T. Eppig; Franziska Grieder; Nathaniel Heintz; Geoff Hicks; Thomas R. Insel; Alexandra L. Joyner; Beverly H. Koller; K. C. Kent Lloyd; Terry Magnuson; Mark Moore; Andras Nagy; Jonathan D. Pollock; Allen D. Roses; Arthur T. Sands; Brian Seed; William C. Skarnes; Jay Snoddy; Philippe Soriano; D. Stewart; Francis Stewart; Bruce Stillman

Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain.Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain.


Cell | 1986

High frequency targeting of genes to specific sites in the mammalian genome

Kirk R. Thomas; Kim R. Folger; Mario R. Capecchi

We corrected a defective gene residing in the chromosome of a mammalian cell by injecting into the nucleus copies of the same gene carrying a different mutation. We determined how the number, the arrangement, and the chromosomal position of the integrated gene, as well as the number of injected molecules influence the gene-targeting frequency. Recombination between the newly introduced DNA and its chromosomal homolog occurred at a frequency of 1 in 10(3) cells receiving DNA. Correction events were mediated by either double reciprocal recombination or gene conversion. This resulted in sequences in the genome being replaced by sequences of the introduced DNA or, in separate experiments, sequences in the incoming DNA being replaced by chromosomal sequences. Both point mutations and deletion mutations were corrected; however, the nature of the mutation carried by the respective sequence influenced whether the integrated or injected sequence was corrected.


Nature Medicine | 2009

Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche

Akifumi Ootani; Xingnan Li; Eugenio Sangiorgi; Quoc T. Ho; Hiroo Ueno; Shuji Toda; Hajime Sugihara; Kazuma Fujimoto; Irving L. Weissman; Mario R. Capecchi; Calvin J. Kuo

The in vitro analysis of intestinal epithelium has been hampered by a lack of suitable culture systems. Here we describe robust long-term methodology for small and large intestinal culture, incorporating an air-liquid interface and underlying stromal elements. These cultures showed prolonged intestinal epithelial expansion as sphere-like organoids with proliferation and multilineage differentiation. The Wnt growth factor family positively regulates proliferation of the intestinal epithelium in vivo. Accordingly, culture growth was inhibited by the Wnt antagonist Dickkopf-1 (Dkk1) and markedly stimulated by a fusion protein between the Wnt agonist R-spondin-1 and immunoglobulin Fc (RSpo1-Fc). Furthermore, treatment with the γ-secretase inhibitor dibenzazepine and neurogenin-3 overexpression induced goblet cell and enteroendocrine cell differentiation, respectively, consistent with endogenous Notch signaling and lineage plasticity. Epithelial cells derived from both leucine-rich repeat-containing G protein–coupled receptor-5–positive (Lgr5+) and B lymphoma moloney murine leukemia virus insertion region homolog-1–positive (Bmi1+) lineages, representing putative intestinal stem cell (ISC) populations, were present in vitro and were expanded by treatment with RSpo1-Fc; this increased number of Lgr5+ cells upon RSpo1-Fc treatment was subsequently confirmed in vivo. Our results indicate successful long-term intestinal culture within a microenvironment accurately recapitulating the Wnt- and Notch-dependent ISC niche.


Proceedings of the National Academy of Sciences of the United States of America | 2012

The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations

Kelley S. Yan; Luis A. Chia; Xingnan Li; Akifumi Ootani; James Su; Josephine Y. Lee; Nan Su; Yuling Luo; Sarah C. Heilshorn; Manuel R. Amieva; Eugenio Sangiorgi; Mario R. Capecchi; Calvin J. Kuo

The small intestine epithelium undergoes rapid and continuous regeneration supported by crypt intestinal stem cells (ISCs). Bmi1 and Lgr5 have been independently identified to mark long-lived multipotent ISCs by lineage tracing in mice; however, the functional distinctions between these two populations remain undefined. Here, we demonstrate that Bmi1 and Lgr5 mark two functionally distinct ISCs in vivo. Lgr5 marks mitotically active ISCs that exhibit exquisite sensitivity to canonical Wnt modulation, contribute robustly to homeostatic regeneration, and are quantitatively ablated by irradiation. In contrast, Bmi1 marks quiescent ISCs that are insensitive to Wnt perturbations, contribute weakly to homeostatic regeneration, and are resistant to high-dose radiation injury. After irradiation, however, the normally quiescent Bmi1+ ISCs dramatically proliferate to clonally repopulate multiple contiguous crypts and villi. Clonogenic culture of isolated single Bmi1+ ISCs yields long-lived self-renewing spheroids of intestinal epithelium that produce Lgr5-expressing cells, thereby establishing a lineage relationship between these two populations in vitro. Taken together, these data provide direct evidence that Bmi1 marks quiescent, injury-inducible reserve ISCs that exhibit striking functional distinctions from Lgr5+ ISCs and support a model whereby distinct ISC populations facilitate homeostatic vs. injury-induced regeneration.


Molecular and Cellular Biology | 1992

Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus.

Chu-Xia Deng; Mario R. Capecchi

Abstract Mutations were targeted to the Hprt locus of mouse embryo-derived stem cells by using 22 different sequence replacement and sequence insertion vectors. The targeting frequency was examined at two sites within the Hprt locus as a function of the extent of homology between the targeting vector and the target locus. The targeting frequency was also compared by using vectors prepared from isogenic and nonisogenic DNA sources. With one exception, all of the vectors showed the same exponential dependence of targeting efficiency on the extent of homology between the targeting vector and the target locus. This was true regardless of whether they were sequence replacement or sequence insertion vectors, whether they were directed toward either of the two different sites within the Hprt locus, or whether they were prepared from isogenic or nonisogenic DNA sources. Vectors prepared from isogenic DNA targeted four to five times more efficiently than did the corresponding vectors prepared from nonisogenic DNA. The single case of unexpectedly low targeting efficiency involved one of the vectors prepared from nonisogenic DNA and could be attributed to an unfavorable distribution of heterology between the Hprt sequences present in the targeting vector and the endogenous Hprt gene.


Cell | 2010

Hematopoietic Origin of Pathological Grooming in Hoxb8 Mutant Mice

Shau Kwaun Chen; Petr Tvrdik; Erik Peden; Scott Cho; Sen Wu; Gerald J. Spangrude; Mario R. Capecchi

Mouse Hoxb8 mutants show unexpected behavior manifested by compulsive grooming and hair removal, similar to behavior in humans with the obsessive-compulsive disorder spectrum disorder trichotillomania. As Hox gene disruption often has pleiotropic effects, the root cause of this behavioral deficit was unclear. Here we report that, in the brain, Hoxb8 cell lineage exclusively labels bone marrow-derived microglia. Furthermore, transplantation of wild-type bone marrow into Hoxb8 mutant mice rescues their pathological phenotype. It has been suggested that the grooming dysfunction results from a nociceptive defect, also exhibited by Hoxb8 mutant mice. However, bone marrow transplant experiments and cell type-specific disruption of Hoxb8 reveal that these two phenotypes are separable, with the grooming phenotype derived from the hematopoietic lineage and the sensory defect derived from the spinal cord cells. Immunological dysfunctions have been associated with neuropsychiatric disorders, but the causative relationships are unclear. In this mouse, a distinct compulsive behavioral disorder is associated with mutant microglia.

Collaboration


Dive into the Mario R. Capecchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles Keller

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malay Haldar

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge