Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario R. Montesdeoca is active.

Publication


Featured researches published by Mario R. Montesdeoca.


Environmental Pollution | 2008

Wetland influence on mercury fate and transport in a temperate forested watershed

Pranesh Selvendiran; Charles T. Driscoll; Joseph T. Bushey; Mario R. Montesdeoca

The transport and fate of mercury (Hg) was studied in two forest wetlands; a riparian peatland and an abandoned beaver meadow. The proportion of total mercury (THg) that was methyl mercury (% MeHg) increased from 2% to 6% from the upland inlets to the outlet of the wetlands. During the growing season, MeHg concentrations were approximately three times higher (0.27ng/L) than values during the non-growing season (0.10ng/L). Transport of Hg species was facilitated by DOC production as indicated by significant positive relations with THg and MeHg. Elevated concentrations of MeHg and % MeHg (as high as 70%) were found in pore waters of the riparian and beaver meadow wetlands. Groundwater interaction with the stream was limited at the riparian peatland due to the low hydraulic conductivity of the peat. The annual fluxes of THg and MeHg at the outlet of the watershed were 2.3 and 0.092microg/m2-year respectively.


Journal of Geophysical Research | 2008

Inputs, storage, and transport of total and methyl mercury in two temperate forest wetlands

Pranesh Selvendiran; Charles T. Driscoll; Mario R. Montesdeoca; Joseph T. Bushey

connectivity to stream water. The volatilization rate of elemental mercury (Hg o )i n the beaver meadow wetland is of similar magnitude compared to total atmospheric Hg deposition and constitutes an important component of the overall annual Hg budget. In contrast, annual Hg o fluxes exhibited net transfer from the atmosphere to soil at the riparian wetland possibly because volatilization rates were retarded by slower diffusion of Hg o through soil to the air-water interface in water-saturated soil. The storage of THg and MeHg in wetland soil is a large pool which appears coupled with carbon and sulfur accumulation. In the current scenario of decreasing Hg emissions and atmospheric deposition, the large ‘‘active’’ soil pool in wetlands is a potential short-term and long-term source of Hg and MeHg to downstream aquatic ecosystems.


Ecological Applications | 2014

Soil mercury and its response to atmospheric mercury deposition across the northeastern United States

Xue Yu; Charles T. Driscoll; Richard A. F. Warby; Mario R. Montesdeoca; Chris E. Johnson

Terrestrial soil is a large reservoir of atmospherically deposited mercury (Hg). However, few studies have evaluated the accumulation of Hg in terrestrial ecosystems in the northeastern United States, a region which is sensitive to atmospheric Hg deposition. We characterized Hg and organic matter in soil profiles from 139 sampling sites for five subregions across the northeastern United States and estimated atmospheric Hg deposition to these sites by combining numerical modeling with experimental data from the literature. We did not observe any significant relationships between current net atmospheric Hg deposition and soil Hg concentrations or pools, even though soils are a net sink for Hg inputs. Soil Hg appears to be preserved relative to organic carbon (OC) and/or nitrogen (N) in the soil matrix, as a significant negative relationship was observed between the ratios of Hg/OC and OC/N (r = 0.54, P < 0.0001) that shapes the horizonal distribution patterns. We estimated that atmospheric Hg deposition since 1850 (3.97 mg/m2) accounts for 102% of the Hg pool in the organic horizons (3.88 mg/m2) and 19% of the total soil Hg pool (21.32 mg/m2), except for the southern New England (SNE) subregion. The mean residence time for soil Hg was estimated to be 1800 years, except SNE which was 800 years. These patterns suggest that in addition to atmospheric deposition, the accumulation of soil Hg is linked to the mineral diagenetic and soil development processes in the region.


FEMS Microbiology Ecology | 2010

Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland

Ri Qing Yu; Isaac Adatto; Mario R. Montesdeoca; Charles T. Driscoll; Mark E. Hines; Tamar Barkay

Processes leading to the bioaccumulation of methylmercury (MeHg) in northern wetlands are largely unknown. We have studied various ecological niches within a remote, acidic forested lake ecosystem in the southwestern Adirondacks, NY, to discover that mats comprised of Sphagnum moss were a hot spot for mercury (Hg) and MeHg accumulation (190.5 and 18.6 ng g⁻¹ dw, respectively). Furthermore, significantly higher potential methylation rates were measured in Sphagnum mats as compared with other sites within Sunday Lakes ecosystem. Although MPN estimates showed a low biomass of sulfate-reducing bacteria (SRB), 2.8 × 10⁴ cells mL⁻¹ in mat samples, evidence consisting of (1) a twofold stimulation of potential methylation by the addition of sulfate, (2) a significant decrease in Hg methylation in the presence of the sulfate reduction inhibitor molybdate, and (3) presence of dsrAB-like genes in mat DNA extracts, suggested that SRB were involved in Hg methylation. Sequencing of dsrB genes indicated that novel SRB, incomplete oxidizers including Desulfobulbus spp. and Desulfovibrio spp., and syntrophs dominated the sulfate-reducing guild in the Sphagnum moss mat. Sphagnum, a bryophyte dominating boreal peatlands, and its associated microbial communities appear to play an important role in the production and accumulation of MeHg in high-latitude ecosystems.


Environmental Toxicology and Chemistry | 2013

Evaluation of zebra mussels (Dreissena polymorpha) as biomonitors of mercury contamination in aquatic ecosystems

Bradley D. Blackwell; Charles T. Driscoll; Michael E. Spada; Svetoslava G. Todorova; Mario R. Montesdeoca

Zebra mussels have invaded many lakes in the United States and could be a useful tool for monitoring responses of aquatic biota to changes in mercury loading. The goal of the present study was to evaluate zebra mussels for use as a biomonitor of mercury contamination by comparing zebra mussel mercury concentrations between a lake with only indirect atmospheric mercury contamination (Otisco Lake, NY, USA) and a lake that was directly contaminated by mercury discharges (Onondaga Lake, NY, USA). Zebra mussels were sampled in both the spring and fall of 2004 and 2005. Total mercury (THg) concentrations in zebra mussels were approximately seven times greater in Onondaga Lake than in Otisco Lake, and water column mercury concentrations differed by an order of magnitude between the two lakes. Seasonal differences resulted in significantly higher zebra mussel THg concentrations during the fall for both lakes. There was also significant variation among different sampling sites in Onondaga Lake. Mussel methylmercury concentrations averaged 53% of THg concentrations but were highly variable. Strong relationships between water column THg and zebra mussel THg suggest that zebra mussels are a good indicator of aquatic mercury concentrations and could be used as an effective biomonitor of mercury contamination in aquatic ecosystems.


Science of The Total Environment | 2018

Water quality function of an extensive vegetated roof

Dimitar Todorov; Charles T. Driscoll; Svetoslava G. Todorova; Mario R. Montesdeoca

In this paper we present the results of a four-year study of water quality in runoff from an extensive, sedum covered, vegetated roof on an urban commercial building. Monitoring commenced seven months after the roof was constructed, with the first growing season. Stormwater drainage quality function of the vegetated roof was compared to a conventional (impermeable, high-albedo) membrane roof in addition to paired measurements of wet and bulk depositions at the study site. We present concentrations and fluxes of nutrients and major solutes. We discuss seasonal and year-to-year variation in water quality of drainage from the vegetated roof and how it compares with atmospheric deposition and drainage from the impermeable roof. Drainage waters from the vegetated roof exhibited a high concentration of nutrients compared to atmospheric deposition, particularly during the warm temperature growing season. However, nutrient losses were generally low because of the strong retention of water by the vegetated roof. There was marked variation in the retention of nutrients by season due to variations in concentrations in drainage from the vegetated roof. The vegetated roof was a sink of nitrogen, total phosphorus and chloride, and a source of phosphate and dissolved inorganic and organic carbon. Chloride exhibited elevated inputs and leaching during the winter. The drainage from the vegetated and impermeable roofs met the United States Environmental Protection Agency freshwater standards for all parameters, except for total phosphorus.


International Journal of Environmental Analytical Chemistry | 2017

Measuring mercury in wood: challenging but important

Yang Yang; Ruth D. Yanai; Mario R. Montesdeoca; Charles T. Driscoll

ABSTRACT Mercury (Hg) in tree wood has been overlooked, in part because concentrations are so low as to be below detection limits of some analytical methods, but it is potentially important to forest ecosystem processes and budgets. We tested methods for the preparation and determination of Hg in tree wood by analysing samples of four tree species at the Hubbard Brook Experimental Forest, New Hampshire, USA, using thermal decomposition, catalytic conversion, amalgamation and atomic absorption spectrophotometry (USEPA Method 7473). Samples that were freeze-dried or oven-dried at 65°C were suitable for determination of Hg, whereas oven-drying at 103°C resulted in Hg losses, and air-drying resulted in Hg gains, presumably due to sorption from indoor air. Mean (±SE) concentrations of Hg tree bole wood were 1.75 ± 0.14 ng g−1 for American beech, 1.48 ± 0.23 ng g−1 for sugar maple, 3.96 ± 0.19 ng g−1 for red spruce and 4.59 ± 0.06 ng g−1 for balsam fir. Based on these concentrations and estimates of wood biomass by species based on stand inventory, we estimated the Hg content of wood in the reference watershed at Hubbard Brook to be 0.32 g ha−1, twice the size of the foliar Hg pool (0.15 g ha−1). Mercury in wood deserves more attention and is feasible to measure using appropriate techniques.


PLOS ONE | 2018

Concentrations and content of mercury in bark, wood, and leaves in hardwoods and conifers in four forested sites in the northeastern USA

Yang Yang; Ruth D. Yanai; Charles T. Driscoll; Mario R. Montesdeoca; Kevin T. Smith

Mercury (Hg) is deposited from the atmosphere to remote areas such as forests, but the amount of Hg in trees is not well known. To determine the importance of Hg in trees, we analyzed foliage, bark and bole wood of eight tree species at four sites in the northeastern USA (Huntington Forest, NY; Sleepers River, VT; Hubbard Brook, NH; Bear Brook, ME). Foliar concentrations of Hg averaged 16.3 ng g-1 among the hardwood species, which was significantly lower than values in conifers, which averaged 28.6 ng g-1 (p < 0.001). Similarly, bark concentrations of Hg were lower (p < 0.001) in hardwoods (7.7 ng g-1) than conifers (22.5 ng g-1). For wood, concentrations of Hg were higher in yellow birch (2.1–2.8 ng g-1) and white pine (2.3 ng g-1) than in the other species, which averaged 1.4 ng g-1 (p < 0.0001). Sites differed significantly in Hg concentrations of foliage and bark (p = 0.02), which are directly exposed to the atmosphere, but the concentration of Hg in wood depended more on species (p < 0.001) than site (p = 0.60). The Hg contents of tree tissues in hardwood stands, estimated from modeled biomass and measured concentrations at each site, were higher in bark (mean of 0.10 g ha-1) and wood (0.16 g ha-1) than in foliage (0.06 g ha-1). In conifer stands, because foliar concentrations were higher, the foliar pool tended to be more important. Quantifying Hg in tree tissues is essential to understanding the pools and fluxes of Hg in forest ecosystems.


Journal of Geophysical Research | 2017

Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

Jacqueline R. Gerson; Charles T. Driscoll; Jason D. Demers; Amy K. Sauer; Bradley D. Blackwell; Mario R. Montesdeoca; James B. Shanley; Donald S. Ross

Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the mid-elevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.


Atmospheric Environment | 2008

Mercury dynamics of a northern hardwood canopy

Joseph T. Bushey; Alexei G. Nallana; Mario R. Montesdeoca; Charles T. Driscoll

Collaboration


Dive into the Mario R. Montesdeoca's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James B. Shanley

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge