Mario Tamagnone
University of Turin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mario Tamagnone.
Journal of Horticultural Science & Biotechnology | 2009
P. Balsari; P. Marucco; Mario Tamagnone
Summary In the ambit of the ISAFRUIT Project, a prototype sprayer able to adapt its spray and air distribution automatically, according to the characteristics of the target canopy, to the level of crop disease, or to environmental conditions, it is under development. In order to identify the characteristics of the target canopy, in terms of its size and density, a Crop Identification System (CIS), based on ultrasonic sensors, was studied and produced. The principles governing the functioning of the CIS system and the first experimental results obtained from spray deposition tests carried out in an apple orchard using a CIS-equipped prototype sprayer are described. The first results indicated that, by adapting the application rate to the characteristics of the target, the CIS enabled the amount of spray deposited on the leaves to be maximised with respect to lower and higher volume rates.
Pest Management Science | 2016
Marco Manzone; Mario Tamagnone
BACKGROUND In the agricultural sector, toxic substances can be released into the atmosphere. In recent years, Europe has encountered a significant environmental issue related to the dispersion of pesticides during maize seeding, especially when performed with pneumatic seed drills. This phenomenon can be very dangerous for insects, as the dispersed dust contains pesticides (insecticides, fungicides, etc.) used to dress maize seeds. On the basis of these considerations, experimental tests have been carried out using a filtration system to clean the airflow that exits from the fan of pneumatic maize seed drills. RESULTS The tested filtration system does not interfere with the seeding quality because the vacuum level observed within the filtration system assembled on the seeder (5.7 kPa) is 27% higher than the correct vacuum level to guarantee good seeding quality (4.2 kPa). In addition, it enables a reduction in the risk of environmental contamination, as no dust deposits were found at different distances from the machine. CONCLUSION The use of a filtration system shows advantages in terms of environmental and operator safety because dangerous materials are contained in the filter case, thus avoiding contamination of neighbouring areas and the machinery used (tractor and seed drill).
Pest Management Science | 2017
Marco Manzone; P. Balsari; P. Marucco; Mario Tamagnone
BACKGROUND All maize drills produce a fine dust due to the seed coating abrasions that occur inside the seeding element. The air stream generated by the fan of pneumatic drills - necessary to create a depression in the sowing element of the machine and to guarantee correct seed deposition - can blow away the solid particles detached from the seeds. In order to reduce this phenomenon, a coated maize seeds company (Syngenta®) has set up an ad hoc dual-pipe deflector kit that easily fits different pneumatic drills (also old drills). In this study, the efficiency of this kit and the influence of different drill types on the kits performance in reducing environmental pollution were evaluated using three different pneumatic seed drill models. RESULTS The research showed that a dual-pipe deflector installed on a drill in standard configuration did not change the seeder performance, and by using this kit on pneumatic drills, irrespective of their design, it is possible to reduce by up to 69% the amount of dust drift in comparison with the conventional machine set-up. CONCLUSION The dual-pipe deflector, under the conditions employed in the present experiments, showed good performance with all types of maize pneumatic drill used. Irrespective of the seeder model on which it is mounted, it is able to obtain similar results, indicating its high operational versatility.
Pest Management Science | 2016
Marco Manzone; P. Balsari; P. Marucco; Mario Tamagnone
BACKGROUND The use of pneumatic drills in maize cultivation causes dispersion in the atmosphere of some harmful substances normally used for dressing maize seeds. Some of the dust particles may be deposited on the machines body, becoming dangerous for the environment and for operators. The aim of the present study was to analyse the amount of dust deposited on the frame of drills during maize sowing operations. Tests were performed with different drills and in different operating conditions. RESULTS Data analysis showed that a significant amount (up to 30%) of the tracer can be deposited on the drill body. When wind was not present, higher quantities of tracer were collected and the forward speed did not influence significantly the tracer deposit on the seed drills. The use of different devices designed to prevent dust dispersion was able to limit up to 95% but was not able to eliminate the external contamination of the drill. CONCLUSION The particles present on drills could become a problem for the operator during the filling of the drill. Additionally, the environment can be contaminated if pesticide remains on the drill, generating point-source pollution when the drill is parked outside.
Crop Protection | 2007
P. Balsari; P. Marucco; Mario Tamagnone
Crop Protection | 2013
P. Balsari; Marco Manzone; P. Marucco; Mario Tamagnone
Crop Protection | 2014
Marco Manzone; P. Balsari; P. Marucco; Mario Tamagnone
Aspects of applied biology | 2014
P. Balsari; E. Gil; P. Marucco; C. Bozzer; J. Llop; Mario Tamagnone
Aspects of applied biology | 2014
Mario Tamagnone; P. Balsari; P. Marucco; P. Vai
OENO One | 2013
Marco Vitali; Mario Tamagnone; Tiziana La Iacona; Claudio Lovisolo