Mario van der Stelt
Leiden University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mario van der Stelt.
The EMBO Journal | 2005
Mario van der Stelt; Marcello Trevisani; Vittorio Vellani; Luciano De Petrocellis; Aniello Schiano Moriello; Barbara Campi; Peter A. McNaughton; Piero Geppetti; Vincenzo Di Marzo
The endocannabinoid anandamide is able to interact with the transient receptor potential vanilloid 1 (TRPV1) channels at a molecular level. As yet, endogenously produced anandamide has not been shown to activate TRPV1, but this is of importance to understand the physiological function of this interaction. Here, we show that intracellular Ca2+ mobilization via the purinergic receptor agonist ATP, the muscarinic receptor agonist carbachol or the Ca2+‐ATPase inhibitor thapsigargin leads to formation of anandamide, and subsequent TRPV1‐dependent Ca2+ influx in transfected cells and sensory neurons of rat dorsal root ganglia (DRG). Anandamide metabolism and efflux from the cell tonically limit TRPV1‐mediated Ca2+ entry. In DRG neurons, this mechanism was found to lead to TRPV1‐mediated currents that were enhanced by selective blockade of anandamide cellular efflux. Thus, endogenous anandamide is formed on stimulation of metabotropic receptors coupled to the phospholipase C/inositol 1,4,5‐triphosphate pathway and then signals to TRPV1 channels. This novel intracellular function of anandamide may precede its action at cannabinoid receptors, and might be relevant to its control over neurotransmitter release.
Neuromolecular Medicine | 2005
Mario van der Stelt; Vincenzo Di Marzo
Two G protein-coupled receptors for marijuana’s psychoactive component, Δ9-tetrahydrocannabinol, have been cloned to date, the cannabinoid CB1 and CB2 receptors. These two proteins, the endogenous lipids that activate them, also known as endocannabinoids, and the proteins for the biosynthesis and inactivation of these ligands constitute the endocannabinoid system. Evidence has accumulated over the last few years suggesting that endocannabinoid-based drugs may potentially be useful to reduce the effects of neurodegeneration. In fact, exogenous and endogenous cannabinoids were shown to exert neuroprotection in a variety of in vitro and in vivo models of neuronal injury via different mechanisms, such as prevention of excitotoxicity by cannabinoid CB1-mediated inhibition of glutamatergic transmission, reduction of calcium influx, anti-oxidant activity, activation of the phosphatidylinositol 3-kinase/protein kinase B pathway, induction of phosphorylation of extracellular regulated kinases and the expression of transcription factors and neurotrophins, lowering of cerebrovasoconstriction and induction of hypothermia. The release of endocannabinoids during neuronal injury may constitute a protective response. If this neuroprotective function of cannabinoid receptor activation can be transferred to the clinic, it might represent an interesting target to develop neuroprotective agents.
The FASEB Journal | 2005
Mario van der Stelt; Susan H. Fox; Michael D. Hill; A.R. Crossman; Stefania Petrosino; Vincenzo Di Marzo; Jonathan M. Brotchie
Endocannabinoids and cannabinoid CB1 receptors play a role in the control of movement by modulating GABA, glutamate, and other neurotransmitters throughout the basal ganglia. Roles for abnormalities in endocannabinoid signaling in Parkinsons disease (PD) and the major side effect of current treatments, levodopa‐induced dyskinesia (LID), have been suggested by rodent studies. Here we show that signaling by endocannabinoids contributes to the pathophysiology of parkinsonism and LID in MPTP‐lesioned, non‐human primate models of Parkinsons disease. In MPTP‐lesioned marmosets previously treated with levodopa to establish LID, attenuation of CB1 signaling by systemic administration of rimonabant (1 and 3 mg/kg) had anti‐parkinsonian actions, equivalent to a 71% increase in motor activity at 3 mg/kg. Rimonabant did not elicit dyskinesia. Co‐administration of levodopa (8 mg/kg) and rimonabant (1 and 3 mg/kg) resulted in significantly less dyskinesia than levodopa alone, without significantly affecting the anti‐parkinsonian action of levodopa. These data suggest that enhanced endocannabinoid signaling may be involved in the pathophysiology of both parkinsonism and LID. To define potential mechanisms by which such a role might be mediated, we determined the levels of the endocannabinoids anandamide and 2‐arachidonyl glycerol (2‐AG) throughout the basal ganglia in normal and three groups of MPTP‐lesioned cynomolgus monkeys (untreated; acutely treated with L‐DOPA, non‐dyskinetic; long‐term treated, with levodopa‐induced dyskinesia). In the untreated, MPTP‐lesioned primate, parkinsonism was associated with increases in both 2‐AG (+88%) and anandamide (+49%) in the striatum, and of 2‐AG (+97%) in the substantia nigra, changes that are consistent with the previously suggested role for endocannabinoids in mechanisms attempting to compensate for loss of dopamine in untreated parkinsonism. Increased levels of anandamide (+34%) in the external globus pallidus of MPTP‐lesioned animals were normalized by levodopa treatment and may contribute to the generation of parkinsonian symptoms. However, no clear alteration in endocannabinoid levels could be correlated with the expression of LID. These data highlight the potential roles played by endocannabinoids and CB1 in PD and LID and suggest the need for further research to pursue the multiple therapeutic opportunities for manipulating this system in movement disorders.
Neuropsychopharmacology | 2007
Silvia Marinelli; Vincenzo Di Marzo; Fulvio Florenzano; Filomena Fezza; Maria Teresa Viscomi; Mario van der Stelt; Giorgio Bernardi; Marco Molinari; Mauro Maccarrone; Nicola B. Mercuri
In the present study, we used electrophysiological, biochemical, and confocal microscopy techniques, to investigate the functional role of transient receptor potential vanilloid type 1 (TRPV1) and cannabinoid type 1 receptors (CB1-R) in the substantia nigra pars compacta (SNpc) and their stimulation by the endocannabinoid N-arachidonoyl-dopamine (NADA). Liquid chromatography–mass spectrometry analyses revealed that a NADA-like compound is produced in substantia nigra slices, in conditions of hyperactivity. Moreover, the functional role of both TRPV1 and CB1-R in modulating synaptic transmission in this area was suggested by confocal microscopy data, showing TRPV1 and CB1-R immunoreactivity in punctate structures, probably representing synaptic contacts on cell bodies of the SNpc. In patch-clamp recordings from dopamine (DA) neurons of the SNpc, we found that NADA increases or reduces glutamatergic transmission onto DA neurons by activating TRPV1 and CB1 receptors, respectively, whereas it decreases GABAergic transmission via CB1 stimulation. Facilitation of glutamate release through TRPV1 was blocked in the presence of a selective blocker of the putative endocannabinoid membrane transporter (EMT), indicating that NADA needs to be taken up by cells to interact with this receptor. In line with these data, biochemical results demonstrated that NADA selectively acted at CB1-R when its re-uptake was blocked. Altogether these data demonstrate a significant role exerted by the endocannabinoid/endovanilloid NADA in the regulation of synaptic transmission to DA neurons of the SNpc. Moreover, they highlight a key function of the EMT transporter in promoting the stimulation of TRPV1 or CB1-R, thus favoring facilitation or inhibition of glutamate synaptic release.
Biochemical Journal | 2004
Alessia Ligresti; Enrico Morera; Mario van der Stelt; Krisztina Monory; Beat Lutz; Giorgio Ortar; Vincenzo Di Marzo
Indirect evidence for the existence of a specific protein-mediated process for the cellular uptake of endocannabinoids has been reported, but recent results suggested that such a process, at least for AEA [ N -arachidonoylethanolamine (anandamide)], is facilitated uniquely by its intracellular hydrolysis by FAAH (fatty acid amide hydrolase) [Glaser, Abumrad, Fatade, Kaczocha, Studholme and Deutsch (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 4269-4274]. In the present study, we show that FAAH alone cannot account for the facilitated diffusion of AEA across the cell membrane. In particular, (i) using a short incubation time (90 s) to avoid AEA hydrolysis by FAAH, AEA accumulation into rat basophilic leukaemia or C6 cells was saturable at low microM concentrations of substrate and non-saturable at higher concentrations; (ii) time-dependent and, at low microM concentrations of substrate, saturable AEA accumulation was observed also using mouse brain synaptosomes; (iii) using synaptosomes prepared from FAAH-deficient mice, saturable AEA accumulation was still observed, although with a lower efficacy; (iv) when 36 AEA and N -oleoylethanolamine analogues, most of which with phenyl rings in the polar head group region, were tested as inhibitors of AEA cellular uptake, strict structural and stereochemical requirements were needed to observe significant inhibition, and in no case the inhibition of FAAH overlapped with the inhibition of AEA uptake; and (v) AEA biosynthesis by cells and sensory neurons was followed by AEA release, and this latter process, which cannot be facilitated by FAAH, was still blocked by an inhibitor of AEA uptake. We suggest that at least one protein different from FAAH is required to facilitate AEA transport across the plasma membrane in a selective and bi-directional way.
Molecular Neurobiology | 2002
Mario van der Stelt; Wouter B. Veldhuis; Mauro Maccarrone; P.R. Bär; Klaas Nicolay; Gerrit A. Veldink; Vincenzo Di Marzo; Johannes F.G. Vliegenthart
The endocannabinoid system is a valuable target for drug discovery, because it is involved in the regulation of many cellular and physiological functions. The endocannabinoid system constitutes the endogenous lipids anandamide, 2-arachidonoylglycerol and noladin ether, and the cannabinoid CB1 and CB2 receptors as well as the proteins for their inactivation. It is thought that (endo)cannabinoid-based drugs may potentially be useful to reduce the effects of neurodegeneration. This paper reviews recent developments in the endocannabinoid system and its involvement in neuroprotection.Exogenous (endo)cannabinoids have been shown to exert neuroprotection in a variety of in vitro and in vivo models of neuronal injury via different mechanisms, such as prevention of excitotoxicity by CB1-mediated inhibition of glutamatergic transmission, reduction of calcium influx, and subsequent inhibition of deleterious cascades, TNF-α formation, and anti-oxidant activity. It has been suggested that the release of endogenous endocannabinoids during neuronal injury might be a protective response. However, several observations indicate that the role of the endocannabinoid system as a general endogenous protection system is questionable. The data are critically reviewed and possible explanations are given.
Molecular and Cellular Biology | 2006
Nina Wettschureck; Mario van der Stelt; Hiroshi Tsubokawa; Heinz Krestel; Alexandra Moers; Stefania Petrosino; Günther Schütz; Vincenzo Di Marzo; Stefan Offermanns
ABSTRACT Metabotropic receptors coupled to Gq/G11 family G proteins critically contribute to nervous system functions by modulating synaptic transmission, often facilitating excitation. We investigated the role of Gq/G11 family G proteins in the regulation of neuronal excitability in mice that selectively lack the α-subunits of Gq and G11, Gαq and Gα11, respectively, in forebrain principal neurons. Surprisingly, mutant mice exhibited increased seizure susceptibility, and the activation of neuroprotective mechanisms was impaired. We found that endocannabinoid levels were reduced under both basal and excitotoxic conditions and that increased susceptibility to kainic acid could be normalized by the enhancement of endocannabinoid levels with an endocannabinoid reuptake inhibitor, while the competitive cannabinoid type 1 receptor antagonist SR141716A did not cause further aggravation. These findings indicate that Gq/G11 family G proteins negatively regulate neuronal excitability in vivo and suggest that impaired endocannabinoid formation in the absence of Gq/G11 contributes to this phenotype.
Nature Communications | 2017
Marjolein Soethoudt; Uwe Grether; Jürgen Fingerle; Travis W. Grim; Filomena Fezza; Luciano De Petrocellis; Christoph Ullmer; Benno Rothenhäusler; Camille Perret; Noortje van Gils; David B. Finlay; Christa MacDonald; Andrea Chicca; Marianela Dalghi Gens; Jordyn Stuart; Henk de Vries; Nicolina Mastrangelo; Lizi Xia; Georgios Alachouzos; Marc P. Baggelaar; Andrea Martella; Elliot D. Mock; Hui Deng; Laura H. Heitman; Mark Connor; Vincenzo Di Marzo; Jürg Gertsch; Aron H. Lichtman; Mauro Maccarrone; Pál Pacher
The cannabinoid CB2 receptor (CB2R) represents a promising therapeutic target for various forms of tissue injury and inflammatory diseases. Although numerous compounds have been developed and widely used to target CB2R, their selectivity, molecular mode of action and pharmacokinetic properties have been poorly characterized. Here we report the most extensive characterization of the molecular pharmacology of the most widely used CB2R ligands to date. In a collaborative effort between multiple academic and industry laboratories, we identify marked differences in the ability of certain agonists to activate distinct signalling pathways and to cause off-target effects. We reach a consensus that HU910, HU308 and JWH133 are the recommended selective CB2R agonists to study the role of CB2R in biological and disease processes. We believe that our unique approach would be highly suitable for the characterization of other therapeutic targets in drug discovery research.
Journal of Cerebral Blood Flow and Metabolism | 2003
Wouter B. Veldhuis; Mario van der Stelt; Florence Delmas; Brigitte Gillet; Gerrit A. Veldink; Johannes F.G. Vliegenthart; Klaas Nicolay; P.R. Bär
The susceptibility of immature rat brain to neurotoxicity of N-methyl-D-aspartate (NMDA) has provided a widely used in vivo paradigm to study excitotoxicity relevant to acute neurodegenerative diseases such as cerebral ischemia. In this study, in vivo excitotoxicity was induced via injection of ouabain (1 mM/0.5 μL), a Na+/K+-ATPase-inhibitor, into neonatal rat brain and compared with NMDA injection. The aim of the study was to induce excitotoxicity secondary to cellular membrane depolarization, thereby more closely mimicking the pathophysiologic processes of ischemia-induced brain injury where NMDA-receptor overstimulation by glutamate follows, not precedes, membrane depolarization. Na+/K+-ATPase-inhibition caused an acute, 40% ± 8% decrease of the apparent diffusion coefficient (ADC) of water, as measured using diffusion-weighted magnetic resonance imaging (MRI), and resulted in infarctlike lesions as measured using T2-weighted MRI and histology up to 2 weeks later. Localized one- and two-dimensional 1H-magnetic resonance spectroscopy (MRS) demonstrated that the early excitotoxic diffusion changes were not accompanied by an overall metabolic disturbance. Furthermore, 31P-MRS demonstrated that energy depletion is not a prerequisite for ADC decrease or excitotoxic cell death. Treatment with the NMDA-antagonist MK-80 (1 mg/kg) attenuated the volume of tissue exhibiting a decreased ADC (P < 0.005), demonstrating that the ouabain-induced injury is indeed excitotoxic in nature. The authors argue that, compared with NMDA-injection, ouabain-induced excitotoxicity elicits more appropriate glutamate-receptor overstimulation and is better suited to detect relevant neuroprotection in that it is more sensitive to attenuation of synaptic glutamate levels.
Journal of Medicinal Chemistry | 2013
Paul P. Geurink; Wouter A. van der Linden; Anne C. Mirabella; Nerea Gallastegui; Gerjan de Bruin; Annet E. M. Blom; Mathias J. Voges; Elliot D. Mock; Bogdan I. Florea; Gijs A. van der Marel; Christoph Driessen; Mario van der Stelt; Michael Groll; Herman S. Overkleeft; Alexei F. Kisselev
Proteasomes degrade the majority of proteins in mammalian cells by a concerted action of three distinct pairs of active sites. The chymotrypsin-like sites are targets of antimyeloma agents bortezomib and carfilzomib. Inhibitors of the trypsin-like site sensitize multiple myeloma cells to these agents. Here we describe systematic effort to develop inhibitors with improved potency and cell permeability, yielding azido-Phe-Leu-Leu-4-aminomethyl-Phe-methyl vinyl sulfone (4a, LU-102), and a fluorescent activity-based probe for this site. X-ray structures of 4a and related inhibitors complexed with yeast proteasomes revealed the structural basis for specificity. Nontoxic to myeloma cells when used as a single agent, 4a sensitized them to bortezomib and carfilzomib. This sensitizing effect was much stronger than the synergistic effects of histone acetylase inhibitors or additive effects of doxorubicin and dexamethasone, raising the possibility that combinations of inhibitors of the trypsin-like site with bortezomib or carfilzomib would have stronger antineoplastic activity than combinations currently used clinically.