Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario Van Poucke is active.

Publication


Featured researches published by Mario Van Poucke.


BMC Developmental Biology | 2005

Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos

Karen Goossens; Mario Van Poucke; Ann Van Soom; Jo Vandesompele; Alex Van Zeveren; Luc Peelman

BackgroundReal-time quantitative PCR is a sensitive and very efficient technique to examine gene transcription patterns in preimplantation embryos, in order to gain information about embryo development and to optimize assisted reproductive technologies. Critical to the succesful application of real-time PCR is careful assay design, reaction optimization and validation to maximize sensitivity and accuracy. In most of the studies published GAPD, ACTB or 18S rRNA have been used as a single reference gene without prior verification of their expression stability. Normalization of the data using unstable controls can result in erroneous conclusions, especially when only one reference gene is used.ResultsIn this study the transcription levels of 8 commonly used reference genes (ACTB, GAPD, Histone H2A, TBP, HPRT1, SDHA, YWHAZ and 18S rRNA) were determined at different preimplantation stages (2-cell, 8-cell, blastocyst and hatched blastocyst) in order to select the most stable genes to normalize quantitative data within different preimplantation embryo stages.ConclusionUsing the geNorm application YWHAZ, GAPD and SDHA were found to be the most stable genes across the examined embryonic stages, while the commonly used ACTB was shown to be highly regulated. We recommend the use of the geometric mean of those 3 reference genes as an accurate normalization factor, which allows small expression differences to be reliably measured.


Nature Methods | 2013

The need for transparency and good practices in the qPCR literature

Stephen A. Bustin; Vladimir Benes; Jeremy A. Garson; Jan Hellemans; Jim F. Huggett; Mikael Kubista; Reinhold Mueller; Tania Nolan; Michael W. Pfaffl; Gregory L. Shipley; Carl T. Wittwer; Peter Schjerling; Philip J. R. Day; Mónica Abreu; Begoña Aguado; Jean-François Beaulieu; Anneleen Beckers; Sara Bogaert; John A. Browne; Fernando Carrasco-Ramiro; Liesbeth Ceelen; Kate L. Ciborowski; Pieter Cornillie; Stephanie Coulon; Ann Cuypers; Sara De Brouwer; Leentje De Ceuninck; Jurgen De Craene; Hélène De Naeyer; Ward De Spiegelaere

Two surveys of over 1,700 publications whose authors use quantitative real-time PCR (qPCR) reveal a lack of transparent and comprehensive reporting of essential technical information. Reporting standards are significantly improved in publications that cite the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, although such publications are still vastly outnumbered by those that do not.


BMC Biotechnology | 2006

Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A

Tim Erkens; Mario Van Poucke; Jo Vandesompele; Karen Goossens; Alex Van Zeveren; Luc Peelman

BackgroundAn essential part of using real-time RT-PCR is that expression results have to be normalized before any conclusions can be drawn. This can be done by using one or multiple, validated reference genes, depending on the desired accuracy of the results. In the pig however, very little information is available on the expression stability of reference genes. The aim of this study was therefore to develop a new set of reference genes which can be used for normalization of mRNA expression data of genes expressed in porcine backfat and longissimus dorsi muscle, both representing an economically important part of a pigs carcass. Because of its multiple functions in fat metabolism and muscle fibre type composition, peroxisome proliferative activated receptor γ coactivator 1α (PPARGC1A) is a very interesting candidate gene for meat quality, and was an ideal gene to evaluate our developed set of reference genes for normalization of mRNA expression data of both tissue types.ResultsThe mRNA expression stability of 10 reference genes was determined. The expression of RPL13A and SDHA appeared to be highly unstable. After normalization to the geometric mean of the three most stably expressed reference genes (ACTB, TBP and TOP2B), the results not only showed that the mRNA expression of PPARGC1A was significantly higher in each of the longissimus dorsi muscle samples than in backfat (P < 0.05), but also that the expression was significantly higher in the most cranial of the three muscle samples (P < 0.05).ConclusionThis study provides a new set of reference genes (ACTB, TBP and TOP2B) suitable for normalization of real-time RT-PCR data of backfat and longissimus dorsi muscle in the pig. The obtained PPARGC1A expression results, after application of this set of reference genes, are a first step in unravelling the PPARGC1A expression pattern in the pig and provide a basis for possible selection towards improved meat quality while maintaining a lean carcass.


BMC Infectious Diseases | 2005

A dual fluorescent multiprobe assay for prion protein genotyping in sheep

Mario Van Poucke; Jo Vandesompele; Marc Mattheeuws; Alex Van Zeveren; Luc Peelman

BackgroundScrapie and BSE belong to a group of fatal, transmissible, neurodegenerative diseases called TSE. In order to minimize the risk of natural scrapie and presumed natural BSE in sheep, breeding programmes towards TSE resistance are conducted in many countries based on resistance rendering PRNP polymorphisms at codons 136 (A/V), 154 (R/H) and 171 (R/H/Q). Therefore, a reliable, fast and cost-effective method for routine PRNP genotyping in sheep, applicable in standard equipped molecular genetic laboratories, will be a vital instrument to fulfill the need of genotyping hundreds or thousands of sheep.MethodsA dual fluorescent multiprobe assay consisting of 2 closed tube PCR reactions containing respectively 4 and 3 dual-labelled fluorescent ASO probes for the detection in real-time of the 7 allelic variants of sheep PRNP mentioned above.ResultsThe assay is succesfully performed using unpurified DNA as a template for PCR, without any post-PCR manipulations and with semi-automatic determination of the PRNP genotypes. The performance of the assay was confirmed via PCR-RFLP and sequencing in a cross-validation study with 50 sheep.ConclusionsWe report the development and validation of a robust, reliable and reproducible method for PRNP genotyping of a few to many sheep samples in a fast, simple and cost-effective way, applicable in standard equipped molecular genetic laboratories. The described primer/probe design strategy can also be applied for the detection of other polymorphisms or disease causing mutations.


Stem Cells and Development | 2013

Regulatory microRNA Network Identification in Bovine Blastocyst Development

Karen Goossens; Pieter Mestdagh; Steve Lefever; Mario Van Poucke; Alex Van Zeveren; Ann Van Soom; Jo Vandesompele; Luc Peelman

Mammalian blastocyst formation is characterized by two lineage segregations resulting in the formation of the trophectoderm, the hypoblast, and the epiblast cell lineages. Cell fate determination during these early lineage segregations is associated with changes in the expression of specific transcription factors. In addition to the transcription factor-based control, it has become clear that also microRNAs (miRNAs) play an important role in the post-transcriptional regulation of pluripotency and differentiation. To elucidate the role of miRNAs in early lineage segregation, we compared the miRNA expression in early bovine blastocysts with the more advanced stage of hatched blastocysts. Reverse transcription-quantitative PCR-based miRNA expression profiling revealed eight upregulated miRNAs (miR-127, miR-130a, miR-155, miR-196a, miR-203, miR-28, miR-29c, and miR-376a) and four downregulated miRNAs (miR-135a, miR-218, miR-335, and miR-449b) in hatched blastocysts. Through an integrative analysis of matching miRNA and mRNA expression data, candidate miRNA-mRNA interaction pairs were prioritized for validation. Using an in vitro luciferase reporter assay, we confirmed a direct interaction between miR-218 and CDH2, miR-218 and NANOG, and miR-449b and NOTCH1. By interfering with the FGF signaling pathway, we found functional evidence that miR-218, mainly expressed in the inner cell mass, regulates the NANOG expression in the bovine blastocyst in response to FGF signaling. The results of this study expand our knowledge about the miRNA signature of the bovine blastocyst and of the interactions between miRNAs and cell fate regulating transcription factors.


Journal of Controlled Release | 2013

Innate immune response and programmed cell death following carrier-mediated delivery of unmodified mRNA to respiratory cells

Oliwia Andries; Marina De Filette; Stefaan C. De Smedt; Jo Demeester; Mario Van Poucke; Luc Peelman; Niek N. Sanders

In this report we show that carrier-mediated delivery of mRNA may activate TLR3 signaling in respiratory cells. This activation of the innate immune system was accompanied with a massive production of type 1 interferons and other immunostimulating cytokines. The recognition of mRNA by the innate immune system was also associated with cell death, which proceeded in human respiratory cells via pyroptosis, a form of programmed cell death mediated by substantial overexpression of caspase-1. This indicated that the delivered mRNA is most likely also recognized by NOD-like receptors which regulate caspase-1 production. The viability of murine respiratory cells was less affected by mRNA transfection, which is in line with the lower transfection efficiency, lower innate immune response and the absence of a massive caspase-1 upregulation in these cells. Finally, we also demonstrated that the recognition of the delivered mRNA by the innate immune system had a negative effect on mRNA translation.


The FASEB Journal | 2016

Intrauterine growth restriction in neonatal piglets affects small intestinal mucosal permeability and mRNA expression of redox-sensitive genes

Wei Wang; Jeroen Degroote; Chris Van Ginneken; Mario Van Poucke; Hans Vergauwen; Thi Minh Tho Dam; Daisy Vanrompay; Luc Peelman; Stefaan De Smet; Joris Michiels

Neonates with intrauterine growth restriction (IUGR) show lower efficiency of nutrient utilization compared to normal birth weight (NBW) newborns. This study was conducted using neonatal piglets as a model to test the hypothesis that IUGR affects the intestinal barrier function, intestinal structure, and antioxidant system development during the suckling period. The small intestinal mucosae were obtained from IUGR and NBW littermates in the suckling period (d 0, 3, 8, and 19 postnatal). The epithelial barrier function was assessed by FITC‐dextran 4 (FD4) and horseradish peroxidase (HRP) fluxes across the epithelium, histomorphologic measurements, and expression of tight‐junction proteins. Redox status represented by the glutathione disulfide/glutathione ratio and malondialdehyde concentrations was determined, whereas mRNA expressions of some redox‐sensitive proteins were quantified. Results showed that IUGR piglets exhibited a 2‐fold higher intestinal permeability in the proximal small intestine on d 0 (P < 0.05), and this difference between IUGR and NBW piglets was widened to 3 and 4 times for FD4 and HRP, respectively (P< 0.05), on d 3. In accordance, expression of occludin was downregulated at the transcriptional level in IUGR piglets at d 0 and 19 (P < 0.01). Furthermore, the transcription of heme oxygenase 1, catalase, and thioredoxin reductase genes was downregulated in IUGR piglets, mainly on postnatal d 0 and 19 (P < 0.01). It appears that IUGR subjects have a lower capacity to mount an antioxidant response in the early postnatal period. Collectively, these results add to our understanding of the mechanisms responsible for intestinal dysfunction in IUGR neonates.—Wang, W., Degroote, J., Van Ginneken, C., Van Poucke, M., Vergauwen, H., Dam, T. M. T., Vanrompay, D., Peelman, L. J., De Smet, S., Michiels, J. Intrauterine growth restriction in neonatal piglets affects small intestinal mucosal permeability and mRNA expression of redox‐sensitive genes. FASEB J. 30, 863–873 (2016). www.fasebj.org


Journal of Dairy Research | 2012

Pathogen-group specific association between CXCR1 polymorphisms and subclinical mastitis in dairy heifers

Joren Verbeke; Sofie Piepers; Luc Peelman; Mario Van Poucke; Sarne De Vliegher

The chemokine (C-X-C motif) receptor 1 (CXCR1) gene encodes the homonymous receptor for interleukin 8 (IL8) on polymorphonuclear neutrophilic leucocytes (PMNL). Binding causes migration from blood to milk, activation and prolonged survival of PMNL, a crucial process in the innate immune defence of the bovine mammary gland against invading mastitis-causing pathogens. The main objective of this study was to screen the entire coding region of the CXCR1 gene for polymorphisms and to analyse their association with udder health of dairy heifers. One-hundred-and-forty Belgian Holstein heifers originating from 20 commercial dairy farms were genotyped by DNA sequencing. Detailed phenotypic data on udder health was available including quarter bacteriological culture results and somatic cell count (SCC) in early lactation and composite milk SCC during first lactation. In total, 16 polymorphisms (including 8 missense mutations) were detected. Polymorphism c.980A>G was associated with pathogen-group specific IMI: heifers with genotype AG were less likely to have an IMI due to major mastitis pathogens compared with heifers with genotype GG but did not have less IMI by coagulase-negative staphylococci, so-called minor pathogens. CXCR1 genotype was neither associated with quarter SCC in early lactation nor with composite SCC during lactation. Although mastitis susceptibility is influenced by many factors, some genetic polymorphisms potentially have major effects on udder health of heifers, as was shown here. These results trigger us to further study the relationship between CXCR1 polymorphisms and mastitis susceptibility in both observational and experimental trials.


BMC Genomics | 2007

Characterization of the genomic region containing the Shadow of Prion Protein (SPRN) gene in sheep

Evelyne Lampo; Mario Van Poucke; Karine Hugot; H. Hayes; Alex Van Zeveren; Luc Peelman

BackgroundTSEs are a group of fatal neurodegenerative diseases occurring in man and animals. They are caused by prions, alternatively folded forms of the endogenous prion protein, encoded by PRNP. Since differences in the sequence of PRNP can not explain all variation in TSE susceptibility, there is growing interest in other genes that might have an influence on this susceptibility. One of these genes is SPRN, a gene coding for a protein showing remarkable similarities with the prion protein. Until now, SPRN has not been described in sheep, a highly relevant species in prion matters.ResultsIn order to characterize the genomic region containing SPRN in sheep, a BAC mini-contig was built, covering approximately 200,000 bp and containing the genes ECHS1, PAOX, MTG1, SPRN, LOC619207, CYP2E1 and at least partially SYCE1. FISH mapping of the two most exterior BAC clones of the contig positioned this contig on Oari22q24. A fragment of 4,544 bp was also sequenced, covering the entire SPRN gene and 1206 bp of the promoter region. In addition, the transcription profile of SPRN in 21 tissues was determined by RT-PCR, showing high levels in cerebrum and cerebellum, and low levels in testis, lymph node, jejunum, ileum, colon and rectum.ConclusionAnnotation of a mini-contig including SPRN suggests conserved linkage between Oari22q24 and Hsap10q26. The ovine SPRN sequence, described for the first time, shows a high level of homology with the bovine, and to a lesser extent with the human SPRN sequence. In addition, transcription profiling in sheep reveals main expression of SPRN in brain tissue, as in rat, cow, man and mouse.


Molecular and Cellular Probes | 2009

Positive correlation between relative mRNA expression of PRNP and SPRN in cerebral and cerebellar cortex of sheep

Evelyne Lampo; Mario Van Poucke; Jo Vandesompele; Tim Erkens; Alex Van Zeveren; Luc Peelman

SPRN is an interesting new member of the PRNP family because of its sequence homology with the hydrophobic region of PRNP, its expression in brain tissue and its PrP-like properties in functional experiments on Prnp(0/0) mice. In this study, we investigated by quantitative real-time PCR the relative mRNA expression levels of SPRN and PRNP in sheep cerebrum and cerebellum and the mutual relationship between these expression levels. Analysis of PRNP and SPRN mRNA expression levels in 45 cerebral cortex and 47 cerebellar cortex samples showed that the PRNP expression level was significantly higher (p<0.05) in cerebellum than in cerebrum, while no significant difference was detected for SPRN between these tissues. The expression level varied clearly more in cerebrum than in cerebellum for both genes tested, and the variation was larger for SPRN than for PRNP in both types of brain tissue. Remarkably, the mRNA expression levels of PRNP and SPRN showed a highly significant positive correlation in both cerebrum (p<0.0001) and cerebellum (p<0.001). This positive correlation might indicate co-regulation between these genes. Further investigation on the causal nature of this correlation may provide new insights into prion pathogenesis.

Collaboration


Dive into the Mario Van Poucke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge