Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario Zlatović is active.

Publication


Featured researches published by Mario Zlatović.


Botanica Marina | 2002

Chemical Composition of the Brown Alga Padina pavonia (L.) Gaill. from the Adriatic Sea

Z. Kamenarska; Miroslav J. Gašić; Mario Zlatović; A. Rasovic; Dušan Sladić; Zoran Kljajić; Kamen Stefanov; K. Seizova; H. Najdenski; A. Kujumgiev; Iva Tsvetkova; Simeon Popov

Abstract The chemical composition of the brown alga Padina pavonia (L.) Gaill. from the southern Adriatic Sea was investigated. Twelve sterols were identified in the sterol fraction, the main ones being cholesterol and fucosterol. The main fatty acids in the lipids were also identified. The most abundant fatty acid was palmitic acid, followed by oleic and myristic acids. The concentration of polyunsaturated fatty acids was unusually low for a marine alga. By GC/MS analysis of the volatile and polar fractions, 40 compounds were identified. Some of them probably possess defensive functions. In the volatile fraction free fatty acids, aromatic esters, benzyl alcohol and benzaldehyde predominated. Low concentrations of terpenoids, phenols and sulfur containing compounds were also identified. The n-butanol extract contained mainly fatty acids and polyols. Some of the extracts had an antibacterial activity.


Journal of Medicinal Chemistry | 2014

Second generation steroidal 4-aminoquinolines are potent, dual-target inhibitors of the botulinum neurotoxin serotype A metalloprotease and P. falciparum malaria.

Milica Videnović; Dejan Opsenica; James C. Burnett; Laura Gomba; Jonathan E. Nuss; Života Selaković; Jelena Konstantinović; Maja Krstić; Sandra Šegan; Mario Zlatović; Richard J. Sciotti; Sina Bavari; Bogdan A. Šolaja

Significantly more potent second generation 4-amino-7-chloroquinoline (4,7-ACQ) based inhibitors of the botulinum neurotoxin serotype A (BoNT/A) light chain were synthesized. Introducing an amino group at the C(3) position of the cholate component markedly increased potency (IC50 values for such derivatives ranged from 0.81 to 2.27 μM). Two additional subclasses were prepared: bis(steroidal)-4,7-ACQ derivatives and bis(4,7-ACQ)cholate derivatives; both classes provided inhibitors with nanomolar-range potencies (e.g., the Ki of compound 67 is 0.10 μM). During BoNT/A challenge using primary neurons, select derivatives protected SNAP-25 by up to 89%. Docking simulations were performed to rationalize the compounds’ in vitro potencies. In addition to specific residue contacts, coordination of the enzyme’s catalytic zinc and expulsion of the enzyme’s catalytic water were a consistent theme. With respect to antimalarial activity, the compounds provided better IC90 activities against chloroquine resistant (CQR) malaria than CQ, and seven compounds were more active than mefloquine against CQR strain W2.


Journal of Separation Science | 2011

Correlation between structure, retention and activity of cholic acid derived cis–trans isomeric bis‐steroidal tetraoxanes

Sandra Šegan; Filip Andrić; Aleksandra Radoičić; Dejan Opsenica; Bogdan A. Šolaja; Mario Zlatović; Dušanka Milojković-Opsenica

Both quantitative structure-retention (QSRR) and quantitative structure-activity relationship (QSAR) studies have been performed to correlate the molecular characteristics of seven pairs of cis-trans isomeric bis-steroidal tetraoxanes with their reversed-phase thin-layer chromatography (RPTLC) retention as well as with their antiproliferative activity. 2D and 3D molecular descriptors as whole molecule representations together with retention parameters as well as with biological activity data were subjected to the multivariate statistical analysis (principal component analysis--PCA and hierarchical cluster analysis--HCA) in order to determine the most influential factors governing the retention and activity against human cervix carcinoma (HeLa) and human malignant melanoma (Fem-X) cell lines. Both QSRR and QSAR models were built by means of the partial least-squares (PLS) statistical method. It was found that hydrogen bond donating (HBD), hydrogen bond accepting (HBAcc), hydrophilic surface percentage (%HS) and hydrophilic-lipophilic balance (HLB) exhibit the strongest influence on retention. The most prominent factors affecting antiproliferative activity of the investigated substances are those relating to the size and shape of a molecule such as: connectivity indices, refractivity (Ref), surface area (SA), molecular volume and weight, polarizability (Pol) and those regarding the ability of hydrogen bonding (HB).


Toxins | 2014

Is Increased Susceptibility to Balkan Endemic Nephropathy in Carriers of Common GSTA1 (*A/*B) Polymorphism Linked with the Catalytic Role of GSTA1 in Ochratoxin A Biotransformation? Serbian Case Control Study and In Silico Analysis

Zorica Reljic; Mario Zlatović; Ana Savic-Radojevic; Tatjana Pekmezovic; Ljubica Djukanovic; Marija Matic; Marija Pljesa-Ercegovac; Jasmina Mimic-Oka; Dejan Opsenica; Tatjana Simic

Although recent data suggest aristolochic acid as a putative cause of Balkan endemic nephropathy (BEN), evidence also exists in favor of ochratoxin A (OTA) exposure as risk factor for the disease. The potential role of xenobiotic metabolizing enzymes, such as the glutathione transferases (GSTs), in OTA biotransformation is based on OTA glutathione adducts (OTHQ-SG and OTB-SG) in blood and urine of BEN patients. We aimed to analyze the association between common GSTA1, GSTM1, GSTT1, and GSTP1 polymorphisms and BEN susceptibility, and thereafter performed an in silico simulation of particular GST enzymes potentially involved in OTA transformations. GSTA1, GSTM1, GSTT1 and GSTP1 genotypes were determined in 207 BEN patients and 138 non-BEN healthy individuals from endemic regions by polymerase chain reaction (PCR). Molecular modeling in silico was performed for GSTA1 protein. Among the GST polymorphisms tested, only GSTA1 was significantly associated with a higher risk of BEN. Namely, carriers of the GSTA1*B gene variant, associated with lower transcriptional activation, were at a 1.6-fold higher BEN risk than those carrying the homozygous GSTA1*A/*A genotype (OR = 1.6; p = 0.037). In in silico modeling, we found four structures, two OTB-SG and two OTHQ-SG, bound in a GSTA1 monomer. We found that GSTA1 polymorphism was associated with increased risk of BEN, and suggested, according to the in silico simulation, that GSTA1-1 might be involved in catalyzing the formation of OTHQ-SG and OTB-SG conjugates.


Journal of Medicinal Chemistry | 2016

Reinvestigating Old Pharmacophores: Are 4-Aminoquinolines and Tetraoxanes Potential Two-Stage Antimalarials?

Nataša Terzić; Jelena Konstantinović; Mikloš Tot; Jovana Burojević; Olgica Djurković-Djaković; Jelena Srbljanović; Tijana Štajner; Tatjana Ž. Verbić; Mario Zlatović; Marta Machado; Inês S. Albuquerque; Miguel Prudêncio; Richard J. Sciotti; Stevan Pecic; Sarah D’Alessandro; Donatella Taramelli; Bogdan A. Šolaja

The syntheses and antiplasmodial activities of various substituted aminoquinolines coupled to an adamantane carrier are described. The compounds exhibited pronounced in vitro and in vivo activity against Plasmodium berghei in the Thompson test. Tethering a fluorine atom to the aminoquinoline C(3) position afforded fluoroaminoquinolines that act as intrahepatocytic parasite inhibitors, with compound 25 having an IC50 = 0.31 μM and reducing the liver load in mice by up to 92% at 80 mg/kg dose. Screening our peroxides as inhibitors of liver stage infection revealed that the tetraoxane pharmacophore itself is also an excellent liver stage P. berghei inhibitor (78: IC50 = 0.33 μM). Up to 91% reduction of the parasite liver load in mice was achieved at 100 mg/kg. Examination of tetraoxane 78 against the transgenic 3D7 strain expressing luciferase under a gametocyte-specific promoter revealed its activity against stage IV-V Plasmodium falciparum gametocytes (IC50 = 1.16 ± 0.37 μM). To the best of our knowledge, compounds 25 and 78 are the first examples of either an 4-aminoquinoline or a tetraoxane liver stage inhibitors.


Journal of Chromatography B | 2016

Quantitative structure retention/activity relationships of biologically relevant 4-amino-7-chloroquinoline based compounds.

Sandra Šegan; Igor Opsenica; Mario Zlatović; Dušanka Milojković-Opsenica; Bogdan A. Šolaja

The chromatographic behaviour of series of 4-amino-7-chloroquinoline (4,7-ACQ) based compounds was studied by reversed-phase thin-layer chromatography (RPTLC) with binary mobile phases containing water and the organic modifiers, DMSO or acetone. The lipophilicity of the studied compounds was determined by extrapolation of retention parameters RM to pure water content in mobile phase. In order to obtain some basic insight into the chromatographic behaviour and structural features of investigated compounds, PCA was performed on both chromatographic data (RM values) and calculated 2D and 3D structural descriptors. Both QSRR and QSAR models were built by means of the partial least squares (PLS) statistical method. It was found that descriptors which encode hydrophobic (dispersive) interactions have positive influence on retention, while influence of descriptors encoding polar interactions was negative. According to the obtained PLS model for inhibition of botulinum neurotoxin serotype A light chain, hydrophobic interactions influence positively on the mechanism of action of the investigated 4,7-ACQ, while polar interactions are less favoured. Contrary, the results of PLS modelling of activity against Plasmodium falciparum strains (W2, D6 and TM91C235) indicate that higher polarity of 4,7-ACQ contribute to their higher antimalarial activity.


RSC Advances | 2015

Anion–π interactions in protein–porphyrin complexes

Mario Zlatović; Sunčica Borozan; Milan Nikolic; Srđan Đ. Stojanović

In this work, we have analyzed the influence of anion–π interactions on the stability of high resolution protein–porphyrin complex crystal structures. The anion–π interactions are distance and orientation dependent. Results of ab initio calculations of stabilization energies showed that they lie mostly in the range from −2 to −4 kcal mol−1 with some of the anion–π interactions having stabilization energies of up to −16 kcal mol−1. In the anionic group, the numbers of anion–π interactions involving Asp and Glu are similar, while His is more often involved in these interactions than other aromatic residues. Furthermore, our study showed that in the dataset used about 70% of the investigated anion–π interactions are in fact multiple anion–π interactions. Our results suggest that interacting residues are predominantly located in buried and partially buried regions. The secondary structure of the anion–π interaction involving residues shows that most of the interacting residues preferred to be in helix conformations. Significant numbers of aromatic residues involved in anion–π interactions have one or more stabilization centers, providing additional stability to the protein–porphyrin complexes. The conservation patterns indicate that more than half of the residues involved in these interactions are evolutionarily conserved, indicating that the contribution of the anion–π interaction is an important factor for the structural stability of the investigated protein–porphyrin complexes.


Bioconjugate Chemistry | 2012

Bioconjugate of lysozyme and the antibacterial marine sesquiterpene quinone avarone and its derivatives

Irena Novaković; Uroš Anđelković; Mario Zlatović; Miroslav J. Gašić; Dušan Sladić

A conjugate of lysozyme with avarone, a bioactive sesquiterpene quinone of marine origin, and its three derivatives were synthesized. MALDI TOF mass spectral analysis and tryptic digestion showed that the only residue in lysozyme that was modified by all derivatives was lysine 97. The identity of the residue was in full correlation with the prediction obtained by molecular modeling. All bioconjugates preserved most of the enzymatic activity of lysozyme. The melting point of the conjugates was slightly increased in comparison to lysozyme, indicating a slight stabilization of structure. The antibacterial activity of all the conjugates to both Gram positive and Gram negative bacteria was stronger than the activity of either lysozyme or the quinones, the MIC values being in low micromolar range for some conjugates.


ACS Chemical Biology | 2017

Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia marcescens and Pseudomonas aeruginosa

Ivana Aleksic; Sandra Šegan; Filip Andrić; Mario Zlatović; Ivana Moric; Dejan Opsenica; Lidija Senerovic

Antibiotic resistance has become a serious global threat to public health; therefore, improved strategies and structurally novel antimicrobials are urgently needed to combat infectious diseases. Here we report a new type of highly potent 4-aminoquinoline derivatives as quorum sensing inhibitors in Serratia marcescens and Pseudomonas aeruginosa, exhibiting weak bactericidal activities (minimum inhibitory concentration (MIC) > 400 μM). Through detailed structure-activity study, we have identified 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines (5 and 10) as biofilm formation inhibitors with 50% biofilm inhibition at 69 μM and 63 μM in S. marcescens and P. aeruginosa, respectively. These two compounds, 5 and 10, are the first quinoline derivatives with anti-biofilm formation activity reported in S. marcescens. Quantitative structure-activity relationship (QSAR) analysis identified structural descriptors such as Wiener indices, hyper-distance-path index (HDPI), mean topological charge (MTC), topological charge index (TCI), and log D(o/w)exp as the most influential in biofilm inhibition in this bacterial species. Derivative 10 is one of the most potent quinoline type inhibitors of pyocyanin production described so far (IC50 = 2.5 μM). While we have demonstrated that 5 and 10 act as Pseudomonas quinolone system (PQS) antagonists, the mechanism of inhibition of S. marcescens biofilm formation with these compounds remains open since signaling similar to P. aeruginosa PQS system has not yet been described in Serratia and activity of these compounds on acylhomoserine lactone (AHL) signaling has not been detected. Our data show that 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines present the promising scaffolds for developing antivirulence and anti-biofilm formation agents against multidrug-resistant bacterial species.


International Journal of Biological Macromolecules | 2018

Anion–π interactions in active centers of superoxide dismutases

Vesna Ribić; Srđan Đ. Stojanović; Mario Zlatović

We investigated 1060 possible anion-π interactions in a data set of 41 superoxide dismutase active centers. Our observations indicate that majority of the aromatic residues are capable to form anion-π interactions, mainly by long-range contacts, and that there is preference of Trp over other aromatic residues in these interactions. Furthermore, 68% of total predicted interactions in the dataset are multiple anion-π interactions. Anion-π interactions are distance and orientation dependent. We analyzed the energy contribution resulting from anion-π interactions using ab initio calculations. The results showed that, while most of their interaction energies lay in the range from -0 to -4kcalmol-1, those energies can be up to -9kcalmol-1 and about 34% of interactions were found to be repulsive. Majority of the suggested anion-π interacting residues in ternary complexes are metal-assisted. Stabilization centers for these proteins showed that all the six residues found in predicted anion-π interactions are important in locating one or more of such centers. The anion-π interacting residues in these proteins were found to be highly conserved. We hope that these studies might contribute useful information regarding structural stability and its interaction in future designs of novel metalloproteins.

Collaboration


Dive into the Mario Zlatović's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge