Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marion Chartier is active.

Publication


Featured researches published by Marion Chartier.


Nature Communications | 2017

The ancestral flower of angiosperms and its early diversification

Hervé Sauquet; Maria von Balthazar; Susana Magallón; James A. Doyle; Peter K. Endress; Emily J. Bailes; Erica Barroso de Morais; Kester Bull-Hereñu; Laetitia Carrive; Marion Chartier; Guillaume Chomicki; Mario Coiro; Raphaël Cornette; Juliana Hanna Leite El Ottra; Cyril Epicoco; Charles S. P. Foster; Florian Jabbour; Agathe Haevermans; Thomas Haevermans; Rebeca Hernández; Stefan A. Little; Stefan D. Löfstrand; Javier A. Luna; Julien Massoni; Sophie Nadot; Susanne Pamperl; Charlotte Prieu; Elisabeth Reyes; Patrícia dos Santos; Kristel M. Schoonderwoerd

Recent advances in molecular phylogenetics and a series of important palaeobotanical discoveries have revolutionized our understanding of angiosperm diversification. Yet, the origin and early evolution of their most characteristic feature, the flower, remains poorly understood. In particular, the structure of the ancestral flower of all living angiosperms is still uncertain. Here we report model-based reconstructions for ancestral flowers at the deepest nodes in the phylogeny of angiosperms, using the largest data set of floral traits ever assembled. We reconstruct the ancestral angiosperm flower as bisexual and radially symmetric, with more than two whorls of three separate perianth organs each (undifferentiated tepals), more than two whorls of three separate stamens each, and more than five spirally arranged separate carpels. Although uncertainty remains for some of the characters, our reconstruction allows us to propose a new plausible scenario for the early diversification of flowers, leading to new testable hypotheses for future research on angiosperms.


Evolution | 2014

THE EVOLUTION OF POLLINATOR–PLANT INTERACTION TYPES IN THE ARACEAE

Marion Chartier; Marc Gibernau; Susanne S. Renner

Most plant–pollinator interactions are mutualistic, involving rewards provided by flowers or inflorescences to pollinators. Antagonistic plant–pollinator interactions, in which flowers offer no rewards, are rare and concentrated in a few families including Araceae. In the latter, they involve trapping of pollinators, which are released loaded with pollen but unrewarded. To understand the evolution of such systems, we compiled data on the pollinators and types of interactions, and coded 21 characters, including interaction type, pollinator order, and 19 floral traits. A phylogenetic framework comes from a matrix of plastid and new nuclear DNA sequences for 135 species from 119 genera (5342 nucleotides). The ancestral pollination interaction in Araceae was reconstructed as probably rewarding albeit with low confidence because information is available for only 56 of the 120–130 genera. Bayesian stochastic trait mapping showed that spadix zonation, presence of an appendix, and flower sexuality were correlated with pollination interaction type. In the Araceae, having unisexual flowers appears to have provided the morphological precondition for the evolution of traps. Compared with the frequency of shifts between deceptive and rewarding pollination systems in orchids, our results indicate less lability in the Araceae, probably because of morphologically and sexually more specialized inflorescences.


Phytochemistry | 2014

The floral scents of Nymphaea subg. Hydrocallis (Nymphaeaceae), the New World night-blooming water lilies, and their relation with putative pollinators

Artur Campos Dália Maia; Carla Teixeira de Lima; Daniela Maria do Amaral Ferraz Navarro; Marion Chartier; Ana Maria Giulietti; Isabel Cristina Machado

Night-blooming water lilies are characterized by intense emission of floral VOCs. Their unique scent-oriented pollinators, cyclocephaline scarabs (Scarabaeidae, Cyclocephalini), are attracted to flowers that they use as reliable sources of food and as mating aggregation sites. Chemical analysis of floral scent samples of seven species of Nymphaea subg. Hydrocallis established remarkably simple fragrant blends, each of which was dominated by one or two prominent compounds that alone accounted for over 95% of total scent emission. A total of 22 VOCs were identified: aliphatics (9), C5-branched chain compounds (5) and aromatics (8). Anisole was the dominant constituent in the floral scents of Nymphaea amazonum subsp. amazonum, N. amazonum subsp. pedersenii and N. tenerinervia, whereas (methoxymethyl)benzene was the most abundant VOC in samples of N. lasiophylla and N. lingulata. Flowers of N. rudgeana and N. gardneriana emitted high amounts of methyl hexanoate and methyl 2-methylbutanoate. Comparisons of floral VOC composition including other day- and night-blooming species of Nymphaea and Victoria obtained from the literature evidenced disparities related to habitus. While flowers of day-blooming species mostly emit aromatic alcohols and ethers, nocturnal species are particularly rich in aromatic ethers, aliphatic esters and C5-branched chain esters. These findings strongly suggest that the floral scent composition within closely related Nymphaea and Victoria is linked to pollinator selection, and the putative role of floral VOCs in pollinator attractiveness is discussed.


Proceedings of the Royal Society B: Biological Sciences | 2017

How (much) do flowers vary? Unbalanced disparity among flower functional modules and a mosaic pattern of morphospace occupation in the order Ericales

Marion Chartier; Stefan D. Löfstrand; Maria von Balthazar; Sylvain Gerber; Florian Jabbour; Hervé Sauquet; Jürg Schönenberger

The staggering diversity of angiosperms and their flowers has fascinated scientists for centuries. However, the quantitative distribution of floral morphological diversity (disparity) among lineages and the relative contribution of functional modules (perianth, androecium and gynoecium) to total floral disparity have rarely been addressed. Focusing on a major angiosperm order (Ericales), we compiled a dataset of 37 floral traits scored for 381 extant species and nine fossils. We conducted morphospace analyses to explore phylogenetic, temporal and functional patterns of disparity. We found that the floral morphospace is organized as a continuous cloud in which most clades occupy distinct regions in a mosaic pattern, that disparity increases with clade size rather than age, and that fossils fall in a narrow portion of the space. Surprisingly, our study also revealed that among functional modules, it is the androecium that contributes most to total floral disparity in Ericales. We discuss our findings in the light of clade history, selective regimes as well as developmental and functional constraints acting on the evolution of the flower and thereby demonstrate that quantitative analyses such as the ones used here are a powerful tool to gain novel insights into the evolution and diversity of flowers.


Journal of Experimental Botany | 2018

Novel computed tomography-based tools reliably quantify plant reproductive investment

Yannick M. Staedler; T Kreisberger; S Manafzadeh; Marion Chartier; S Handschuh; S Pamperl; Susanne Sontag; Ovidiu Paun; Jürg Schönenberger

New computed tomography-based tools allow plant reproductive investment to be quantified, and their use is demonstrated by studying the differences in pollen/ovule ratios across inflorescences of deceptive versus rewarding orchid species.


Oecologia | 2016

Floral traits and pollination ecology of European Arum hybrids

Marion Chartier; Suzanne Liagre; Hanna Weiss-Schneeweiss; Bozena Kolano; J. M. Bessière; Jürg Schönenberger; Marc Gibernau

Hybridisation is common in plants and can affect the genetic diversity and ecology of sympatric parental populations. Hybrids may resemble the parental species in their ecology, leading to competition and/or gene introgression; alternatively, they may diverge from the parental phenotypes, possibly leading to the colonisation of new ecological niches and to speciation. Here, we describe inflorescence morphology, ploidy levels, pollinator attractive scents, and pollinator guilds of natural hybrids of Arum italicum and A. maculatum (Araceae) from a site with sympatric parental populations in southern France to determine how these traits affect the hybrid pollination ecology. Hybrids were characterised by inflorescences with a size and a number of flowers more similar to A. italicum than to A. maculatum. In most cases, hybrid stamens were purple, as in A. maculatum, and spadix appendices yellow, as in A. italicum. Hybrid floral scent was closer to that of A. italicum, but shared some compounds with A. maculatum and comprised unique compounds. Also, the pollinator guild of the hybrids was similar to that of A. italicum. Nevertheless, the hybrids attracted a high proportion of individuals of the main pollinator of A. maculatum. We discuss the effects of hybridisation in sympatric parental zones in which hybrids exhibit low levels of reproductive success, the establishment of reproductive barriers between parental species, the role of the composition of floral attractive scents in the differential attraction of pollinators and in the competition between hybrids and their parental species, and the potential of hybridisation to give rise to new independent lineages.


Taxon | 2016

The evolution of afro-montane Delphinium (Ranunculaceae): Morphospecies, phylogenetics and biogeography

Marion Chartier; Stefan Dressler; Jürg Schönenberger; Alfonso Rojas Mora; Corinne Sarthou; Wei Wang; Florian Jabbour

The genus Delphinium (Ranunculaceae) consists of ca. 300 species and has a mainly holarctic distribution. Few species hove been described from high-altitude areas in West and East Tropical Africa, where the environmental conditions are mostly temperate-like. We aim to clarify the taxonomy of these afro-montane Delphinium species and to understand their evolutionary history in terms of their floral morphology and their phylogenetic and biogeographic relationships. Based on herbarium specimens, we analyze flower shape variation, map the geographic distribution of the morphologically defined taxa and reconstruct the molecular phylogeny of the group. Our quantitative analyses of flower shapes indicate that three species can be defined based on floral morphological traits, hence confirming the latest taxonomic treatment of the group where D. dasycaulon, D. leroyi and D. macrocentrum were described. The examination of herbarium specimens indicates that these three species are almost parapatric. However, their respective monophyly is not supported by molecular data. Considering their relatively young age, the non-monophyly of each of the three morphospecies could be due to incomplete lineage sorting and/or hybridization events. Alternatively, the transition to the D. leroyi floral morph could be the result of evolutionary convergence in the two main groups of afro-montane Delphinium driven by similar pollinators in different sky islands of the East African Rift System. We hypothesize that the main branches of the East African Rift System, as physical barriers to dispersal, may have prevented genetic exchange among geographic clusters.


New Phytologist | 2018

Beyond buzz‐pollination – departures from an adaptive plateau lead to new pollination syndromes

Agnes S. Dellinger; Marion Chartier; Diana Fernández-Fernández; Darin S. Penneys; Marcela Alvear; Frank Almeda; Fabián A. Michelangeli; Yannick M. Staedler; W. Scott Armbruster; Jürg Schönenberger

Summary Pollination syndromes describe recurring adaptation to selection imposed by distinct pollinators. We tested for pollination syndromes in Merianieae (Melastomataceae), which contain bee‐ (buzz‐), hummingbird‐, flowerpiercer‐, passerine‐, bat‐ and rodent‐pollinated species. Further, we explored trait changes correlated with the repeated shifts away from buzz‐pollination, which represents an ‘adaptive plateau’ in Melastomataceae. We used random forest analyses to identify key traits associated with the different pollinators of 19 Merianieae species and estimated the pollination syndromes of 42 more species. We employed morphospace analyses to compare the morphological diversity (disparity) among syndromes. We identified three pollination syndromes (‘buzz‐bee’, ‘mixed‐vertebrate’ and ‘passerine’), characterized by different pollen expulsion mechanisms and reward types, but not by traditional syndrome characters. Further, we found that ‘efficiency’ rather than ‘attraction’ traits were important for syndrome circumscription. Contrary to syndrome theory, our study supports the pooling of different pollinators (hummingbirds, bats, rodents and flowerpiercers) into the ‘mixed‐vertebrate’ syndrome, and we found that disparity was highest in the ‘buzz‐bee’ syndrome. We conclude that the highly adaptive buzz‐pollination system may have prevented shifts towards classical pollination syndromes, but provided the starting point for the evolution of a novel set of distinct syndromes, all having retained multifunctional stamens that provide pollen expulsion, reward and attraction.


New Phytologist | 2018

Floral uniformity through evolutionary time in a species-rich tree lineage

Thais N. C. Vasconcelos; Marion Chartier; Gerhard Prenner; Aline C. Martins; Jürg Schönenberger; Astrid Wingler; Eve Lucas

Changes in floral morphology are expected across evolutionary time and are often promoted as important drivers in angiosperm diversification. Such a statement, however, is in contrast to empirical observations of species-rich lineages that show apparent conservative floral morphologies even under strong selective pressure to change from their environments. Here, we provide quantitative evidence for prolific speciation despite uniform floral morphology in a tropical species-rich tree lineage. We analyse floral disparity in the environmental and phylogenetic context of Myrcia (Myrtaceae), one of the most diverse and abundant tree genera in Neotropical biomes. Variation in floral morphology among Myrcia clades is exceptionally low, even among distantly related species. Discrete floral specialisations do occur, but these are few, present low phylogenetic signal, have no strong correlation with abiotic factors, and do not affect overall macroevolutionary dynamics in the lineage. Results show that floral form and function may be conserved over large evolutionary time scales even in environments full of opportunities for ecological interactions and niche specialisation. Species accumulation in diverse lineages with uniform flowers apparently does not result from shifts in pollination strategies, but from speciation mechanisms that involve other, nonfloral plant traits.


New Phytologist | 2014

The floral morphospace – a modern comparative approach to study angiosperm evolution

Marion Chartier; Florian Jabbour; Sylvain Gerber; Philipp Mitteroecker; Hervé Sauquet; Maria von Balthazar; Yannick M. Staedler; Peter R. Crane; Jürg Schönenberger

Collaboration


Dive into the Marion Chartier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Gibernau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aline C. Martins

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar

Ana Maria Giulietti

State University of Feira de Santana

View shared research outputs
Researchain Logo
Decentralizing Knowledge