Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marion Cousineau is active.

Publication


Featured researches published by Marion Cousineau.


Proceedings of the National Academy of Sciences of the United States of America | 2012

The basis of musical consonance as revealed by congenital amusia

Marion Cousineau; Josh H. McDermott; Isabelle Peretz

Some combinations of musical notes sound pleasing and are termed “consonant,” but others sound unpleasant and are termed “dissonant.” The distinction between consonance and dissonance plays a central role in Western music, and its origins have posed one of the oldest and most debated problems in perception. In modern times, dissonance has been widely believed to be the product of “beating”: interference between frequency components in the cochlea that has been believed to be more pronounced in dissonant than consonant sounds. However, harmonic frequency relations, a higher-order sound attribute closely related to pitch perception, has also been proposed to account for consonance. To tease apart theories of musical consonance, we tested sound preferences in individuals with congenital amusia, a neurogenetic disorder characterized by abnormal pitch perception. We assessed amusics’ preferences for musical chords as well as for the isolated acoustic properties of beating and harmonicity. In contrast to control subjects, amusic listeners showed no preference for consonance, rating the pleasantness of consonant chords no higher than that of dissonant chords. Amusics also failed to exhibit the normally observed preference for harmonic over inharmonic tones, nor could they discriminate such tones from each other. Despite these abnormalities, amusics exhibited normal preferences and discrimination for stimuli with and without beating. This dissociation indicates that, contrary to classic theories, beating is unlikely to underlie consonance. Our results instead suggest the need to integrate harmonicity as a foundation of music preferences, and illustrate how amusia may be used to investigate normal auditory function.


Scientific Reports | 2016

Impaired encoding of rapid pitch information underlies perception and memory deficits in congenital amusia

Philippe Albouy; Marion Cousineau; Anne Caclin; Barbara Tillmann; Isabelle Peretz

Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia or specific language impairment might be a low-level sensory dysfunction. In the present study we test this hypothesis in congenital amusia, a neurodevelopmental disorder characterized by severe deficits in the processing of pitch-based material. We manipulated the temporal characteristics of auditory stimuli and investigated the influence of the time given to encode pitch information on participants’ performance in discrimination and short-term memory. Our results show that amusics’ performance in such tasks scales with the duration available to encode acoustic information. This suggests that in auditory neuro-developmental disorders, abnormalities in early steps of the auditory processing can underlie the high-level deficits (here musical disabilities). Observing that the slowing down of temporal dynamics improves amusics’ pitch abilities allows considering this approach as a potential tool for remediation in developmental auditory disorders.


Hearing Research | 2010

What breaks a melody: Perceiving F0 and intensity sequences with a cochlear implant

Marion Cousineau; Laurent Demany; Bernard Meyer; Daniel Pressnitzer

Pitch perception has been extensively studied using discrimination tasks on pairs of single sounds. When comparing pitch discrimination performance for normal-hearing (NH) and cochlear implant (CI) listeners, it usually appears that CI users have relatively poor pitch discrimination. Tasks involving pitch sequences, such as melody perception or auditory scene analysis, are also usually difficult for CI users. However, it is unclear whether the issue with pitch sequences is a consequence of sound discriminability, or if an impairment exists for sequence processing per se. Here, we compared sequence processing abilities across stimulus dimensions (fundamental frequency and intensity) and listener groups (NH, CI, and NH listeners presented with noise-vocoded sequences). The sequence elements were firstly matched in discriminability, for each listener and dimension. Participants were then presented with pairs of sequences, constituted by up to four elements varying on a single dimension, and they performed a same/different task. In agreement with a previous study (Cousineau et al., 2009) fundamental frequency sequences were processed more accurately than intensity sequences by NH listeners. However, this was not the case for CI listeners, nor for NH listeners presented with noise-vocoded sequences. Intensity sequence processing was, nonetheless, equally accurate in the three groups. These results show that the reduced pitch cues received by CI listeners do not only elevate thresholds, as previously documented, but also affect pitch sequence processing above threshold. We suggest that efficient sequence processing for pitch requires the resolution of individual harmonics in the auditory periphery, which is not achieved with the current generation of implants.


Journal of the Acoustical Society of America | 2010

The role of peripheral resolvability in pitch-sequence processing

Marion Cousineau; Laurent Demany; Daniel Pressnitzer

The authors previously reported that same/different judgments on pitch sequences were more accurate for tones with resolved (low-rank) harmonics compared to unresolved (high-rank) harmonics, even when discriminability between tones was equated [Cousineau et al. (2009). J. Acoust. Soc. Am. 126, 3179-3187]. Here, peripheral resolvability, defined by the number of harmonics per cochlear filter, was contrasted with harmonic number. Tones were presented either diotically or dichotically. In the latter case, even and odd harmonics were presented to different ears, thus halving the number of harmonics per cochlear filter. Performance was better for dichotic than for diotic presentations. This indicates that peripheral resolvability is necessary and sufficient for efficient pitch-sequence processing.


PLOS ONE | 2015

On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception

Marion Cousineau; Gavin M. Bidelman; Isabelle Peretz; Alexandre Lehmann

Some combinations of musical tones sound pleasing to Western listeners, and are termed consonant, while others sound discordant, and are termed dissonant. The perceptual phenomenon of consonance has been traced to the acoustic property of harmonicity. It has been repeatedly shown that neural correlates of consonance can be found as early as the auditory brainstem as reflected in the harmonicity of the scalp-recorded frequency-following response (FFR). “Neural Pitch Salience” (NPS) measured from FFRs—essentially a time-domain equivalent of the classic pattern recognition models of pitch—has been found to correlate with behavioral judgments of consonance for synthetic stimuli. Following the idea that the auditory system has evolved to process behaviorally relevant natural sounds, and in order to test the generalizability of this finding made with synthetic tones, we recorded FFRs for consonant and dissonant intervals composed of synthetic and natural stimuli. We found that NPS correlated with behavioral judgments of consonance and dissonance for synthetic but not for naturalistic sounds. These results suggest that while some form of harmonicity can be computed from the auditory brainstem response, the general percept of consonance and dissonance is not captured by this measure. It might either be represented in the brainstem in a different code (such as place code) or arise at higher levels of the auditory pathway. Our findings further illustrate the importance of using natural sounds, as a complementary tool to fully-controlled synthetic sounds, when probing auditory perception.


Journal of the Acoustical Society of America | 2013

The role of peripheral spectro-temporal coding in congenital amusia

Marion Cousineau; Andrew J. Oxenham; Isabelle Peretz

Congenital amusia, a neurogenetic disorder, affects primarily pitch and melody perception. Here we test the hypothesis that amusics suffer from impaired access to spectro-temporal fine-structure cues associated with low-order resolved harmonics. The hypothesis is motivated by the fact that tones containing only unresolved harmonics result in poorer pitch sensitivity in normal-hearing listeners. F0DLs were measured in amusics and matched controls for harmonic complexes containing either resolved or unresolved harmonics. Sensitivity to temporal-fine-structure was assessed via interaural-time-difference (ITD) thresholds, intensity resolution was probed via interaural-level-difference (ILD) thresholds and intensity difference limens, and spectral resolution was estimated using the notched-noise method. As expected, F0DLs were elevated in amusics for resolved harmonics; however, no difference between amusics and controls was found for F0DLs using unresolved harmonics. The deficit appears unlikely to be due to temporal-fine-structure coding, as ITD thresholds were unimpaired in the amusic group. In addition, no differences were found between the two groups in ILD thresholds, intensity difference limens, or auditory-filter bandwidths. Overall the results suggest a pitch-specific deficit in fine spectro-temporal information processing in amusia that cannot be ascribed to defective temporal-fine-structure or spectral encoding in the auditory periphery. [Work supported by Fyssen Foundation, Erasmus Mundus, CIHR, and NIH grant R01DC05216.]


Frontiers in Systems Neuroscience | 2014

What is a melody? On the relationship between pitch and brightness of timbre

Marion Cousineau; Samuele Carcagno; Laurent Demany; Daniel Pressnitzer

Previous studies showed that the perceptual processing of sound sequences is more efficient when the sounds vary in pitch than when they vary in loudness. We show here that sequences of sounds varying in brightness of timbre are processed with the same efficiency as pitch sequences. The sounds used consisted of two simultaneous pure tones one octave apart, and the listeners’ task was to make same/different judgments on pairs of sequences varying in length (one, two, or four sounds). In one condition, brightness of timbre was varied within the sequences by changing the relative level of the two pure tones. In other conditions, pitch was varied by changing fundamental frequency, or loudness was varied by changing the overall level. In all conditions, only two possible sounds could be used in a given sequence, and these two sounds were equally discriminable. When sequence length increased from one to four, discrimination performance decreased substantially for loudness sequences, but to a smaller extent for brightness sequences and pitch sequences. In the latter two conditions, sequence length had a similar effect on performance. These results suggest that the processes dedicated to pitch and brightness analysis, when probed with a sequence-discrimination task, share unexpected similarities.


Journal of the Acoustical Society of America | 2008

From sounds to melodies: Memory for sequences of pitch and loudness

Marion Cousineau; Daniel Pressnitzer; Laurent Demany

In order to understand speech or appreciate music, listeners have to process and remember patterns of sounds that vary along many perceptual dimensions. Here we investigated the perception of pitch sequences and loudness sequences, using a psychophysical method that uncouples discriminability and memory capacity. Pitch could be produced by either resolved or unresolved harmonics. Random sequences were constructed for which a single attribute (pitch or loudness) could take only two dierent values. These values were selected individually for each participant to produce equal discriminability (d’) for isolated sounds. The participants then had to perform Same-Dierent judgments on pairs of sequences of two, four or eight elements each. We found that performance decreased rapidly with the number of elements for the loudness and pitch of unresolved harmonics conditions. With sequences of four and eight elements, performance was markedly better for the pitch of resolved harmonics condition. These findings show that short-term auditory memory capacity changes with the type of attribute that is varied within a sequence. For pitch, resolved harmonics yield a higher capacity than do unresolved harmonics; this could explain part of the diculties encountered by cochlear implant users when listening to music.


Journal of the Acoustical Society of America | 2009

What makes a melody: The perceptual singularity of pitch sequences

Marion Cousineau; Laurent Demany; Daniel Pressnitzer


Neuropsychologia | 2015

Congenital amusia: A cognitive disorder limited to resolved harmonics and with no peripheral basis

Marion Cousineau; Andrew J. Oxenham; Isabelle Peretz

Collaboration


Dive into the Marion Cousineau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josh H. McDermott

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge