Marion Espeli
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marion Espeli.
Cell | 2013
James C. Lee; Marion Espeli; Carl A. Anderson; Michelle A. Linterman; Joanna Pocock; Naomi J. Williams; Rebecca L. Roberts; Sebastien Viatte; Bo Fu; Norbert Peshu; Tran Tinh Hien; Nguyen Hoan Phu; Emma Wesley; Cathryn Edwards; Tariq Ahmad; John C. Mansfield; Richard B. Gearry; Sarah J. Dunstan; Thomas N. Williams; Anne Barton; Carola G. Vinuesa; Miles Parkes; Paul A. Lyons; Kenneth G C Smith
Summary The clinical course and eventual outcome, or prognosis, of complex diseases varies enormously between affected individuals. This variability critically determines the impact a disease has on a patient’s life but is very poorly understood. Here, we exploit existing genome-wide association study data to gain insight into the role of genetics in prognosis. We identify a noncoding polymorphism in FOXO3A (rs12212067: T > G) at which the minor (G) allele, despite not being associated with disease susceptibility, is associated with a milder course of Crohn’s disease and rheumatoid arthritis and with increased risk of severe malaria. Minor allele carriage is shown to limit inflammatory responses in monocytes via a FOXO3-driven pathway, which through TGFβ1 reduces production of proinflammatory cytokines, including TNFα, and increases production of anti-inflammatory cytokines, including IL-10. Thus, we uncover a shared genetic contribution to prognosis in distinct diseases that operates via a FOXO3-driven pathway modulating inflammatory responses. PaperClip
Journal of Experimental Medicine | 2013
Edward Roberts; Andrew Deonarine; James O. Jones; Alice E. Denton; Christine Feig; Scott K. Lyons; Marion Espeli; Matthew Kraman; Brendan McKenna; Richard J.B. Wells; Qi Zhao; Otavia L. Caballero; Rachel Larder; Anthony P. Coll; Stephen O’Rahilly; Kevin M. Brindle; Sarah A. Teichmann; David A. Tuveson
Ablation of stromal cells expressing fibroblast activation protein-α (FAP) results in cachexia and anemia, and loss of these cells is seen in transplantable tumor models.
Journal of The American Society of Nephrology | 2011
Marion Espeli; Susanne Bökers; Giovanna Giannico; Harriet A. Dickinson; Victoria Bardsley; Agnes B. Fogo; Kenneth G. C. Smith
Autoantibodies are central to the pathogenesis of several autoimmune diseases including systemic lupus erythematosus. Plasma cells secrete these autoantibodies, but the anatomical sites of these cells are not well defined. Here, we found that although dsDNA-specific plasma cells in NZB/W mice were present in spleen and bone marrow, a large number were in the kidneys and their number correlated with the serum dsDNA-IgG titer. We observed renal plasma cells only in mice with nephritis, where they located mainly to the tubulointerstitium of the cortex and outer medulla. These cells had the phenotypic characteristics of fully differentiated plasma cells and, similar to long-lived bone marrow plasma cells, they were not in cell cycle. In patients with lupus nephritis, plasma cells were often present in the medulla in those with the most severe disease, especially combined proliferative and membranous lupus nephritis. The identification of the kidney as a major site of autoreactive plasma cells has implications for our understanding of the pathogenesis of lupus nephritis and for strategies to deplete autoreactive plasma cells, a long-standing therapeutic aim.
Journal of Immunology | 2006
Benjamin Rossi; Marion Espeli; Claudine Schiff; Laurent Gauthier
Interactions between B cell progenitors and bone marrow stromal cells are essential for normal B cell differentiation. We have previously shown that an immune developmental synapse is formed between human pre-B and stromal cells in vitro, leading to the initiation of signal transduction from the pre-BCR. This process relies on the direct interaction between the pre-BCR and the stromal cell-derived galectin-1 (GAL1) and is dependent on GAL1 anchoring to cell surface glycosylated counterreceptors, present on stromal and pre-B cells. In this study, we identify α4β1 (VLA-4), α5β1 (VLA-5), and α4β7 integrins as major GAL1-glycosylated counterreceptors involved in synapse formation. Pre-B cell integrins and their stromal cell ligands (ADAM15/fibronectin), together with the pre-BCR and GAL1, form a homogeneous lattice at the contact area between pre-B and stromal cells. Moreover, integrin and pre-BCR relocalizations into the synapse are synchronized and require actin polymerization. Finally, cross-linking of pre-B cell integrins in the presence of GAL1 is sufficient for driving pre-BCR recruitment into the synapse, leading to the initiation of pre-BCR signaling. These results suggest that during pre-B/stromal cell synapse formation, relocalization of pre-B cell integrins mediated by their stromal cell ligands drives pre-BCR clustering and activation, in a GAL1-dependent manner.
Blood | 2009
Marion Espeli; Stéphane J. C. Mancini; Caroline Breton; Françoise Poirier; Claudine Schiff
Activation of the pre-B-cell receptor (pre-BCR) in the bone marrow depends on both tonic and ligand-induced signaling and leads to pre-BII-cell proliferation and differentiation. Using normal mouse bone marrow pre-BII cells, we demonstrate that the ligand-induced pre-BCR activation depends on pre-BCR/galectin-1/integrin interactions leading to pre-BCR clustering at the pre-BII/stromal cell synapse. In contrast, heparan sulfates, shown to be pre-BCR ligands in mice, are not implicated in pre-BCR relocalization. Inhibition of pre-BCR/galectin-1/integrin interactions has functional consequences, since pre-BII-cell proliferation and differentiation are impaired in an in vitro B-cell differentiation assay, without affecting cellular apoptosis. Most strikingly, although galectin-1-deficient mice do not show an apparent B-cell phenotype, the kinetics of de novo B-cell reconstitution after hydroxyurea treatment indicates a specific delay in pre-BII-cell recovery due to a decrease in pre-BII-cell differentiation and proliferation. Thus, although it remains possible that the pre-BCR interacts with other ligands, these results highlight the role played by the stromal cell-derived galectin-1 for the efficient development of normal pre-BII cells and suggest the existence of pre-BII-specific stromal cell niches in normal bone marrow.
Blood | 2014
Elizabeth F Wallin; Elaine C Jolly; Ondřej Suchánek; J. A. Bradley; Marion Espeli; David Jayne; Michelle A. Linterman; Kenneth G C Smith
The monoclonal anti-CD20 antibody rituximab (RTX) depletes B cells in the treatment of lymphoma and autoimmune disease, and contributes to alloantibody reduction in transplantation across immunologic barriers. The effects of RTX on T cells are less well described. T-follicular helper (Tfh) cells provide growth and differentiation signals to germinal center (GC) B cells to support antibody production, and suppressive T-follicular regulatory (Tfr) cells regulate this response. In mice, both Tfh and Tfr are absolutely dependent on B cells for their formation and on the GC for their maintenance. In this study, we demonstrate that RTX treatment results in a lack of GC B cells in human lymph nodes without affecting the Tfh or Tfr cell populations. These data demonstrate that human Tfh and Tfr do not require an ongoing GC response for their maintenance. The persistence of Tfh and Tfr following RTX treatment may permit rapid reconstitution of the pathological GC response once the B-cell pool begins to recover. Strategies for maintaining remission after RTX therapy will need to take this persistence of Tfh into account.
eLife | 2014
Michelle A. Linterman; Alice E. Denton; Devina P. Divekar; Ilona Zvetkova; Leanne Kane; Cristina Ferreira; Marc Veldhoen; Simon Clare; Gordon Dougan; Marion Espeli; Kenneth G C Smith
The co-stimulatory molecule CD28 is essential for activation of helper T cells. Despite this critical role, it is not known whether CD28 has functions in maintaining T cell responses following activation. To determine the role for CD28 after T cell priming, we generated a strain of mice where CD28 is removed from CD4+ T cells after priming. We show that continued CD28 expression is important for effector CD4+ T cells following infection; maintained CD28 is required for the expansion of T helper type 1 cells, and for the differentiation and maintenance of T follicular helper cells during viral infection. Persistent CD28 is also required for clearance of the bacterium Citrobacter rodentium from the gastrointestinal tract. Together, this study demonstrates that CD28 persistence is required for helper T cell polarization in response to infection, describing a novel function for CD28 that is distinct from its role in T cell priming. DOI: http://dx.doi.org/10.7554/eLife.03180.001
Journal of Biological Chemistry | 2013
Nathalie Jouve; Nicolas Despoix; Marion Espeli; Laurent Gauthier; Sophie Cypowyj; Karim Fallague; Claudine Schiff; Françoise Dignat-George; Frédéric Vély; Aurélie S. Leroyer
Background: CD146 is a glycosylated adhesion molecule involved in the control of vessel integrity. Results: Galectin-1 directly binds to CD146 and this interaction is involved in the control of endothelial cell apoptosis. Conclusion: Galectin-1 is identified as a novel ligand for CD146. Significance: CD146 acts as a decoy-receptor to down-regulate Galectin-1-mediated apoptosis. CD146 is a highly glycosylated junctional adhesion molecule, expressed on human vascular endothelial cells and involved in the control of vessel integrity. Galectin-1 is a lectin produced by vascular cells that can binds N- and O-linked oligosaccharides of cell membrane glycoproteins. Because both CD146 and Galectin-1 are involved in modulation of cell apoptosis, we hypothesized that Galectin-1 could interact with CD146, leading to functional consequences in endothelial cell apoptosis. We first characterized CD146 glycosylations and showed that it is mainly composed of N-glycans able to establish interactions with Galectin-1. We demonstrated a sugar-dependent binding of recombinant CD146 to Galectin-1 using both ELISA and Biacore assays. This interaction is direct, with a KD of 3.10−7 m, and specific as CD146 binds to Galectin-1 and not to Galectin-2. Moreover, co-immunoprecipitation experiments showed that Galectin-1 interacts with endogenous CD146 that is highly expressed by HUVEC. We observed a Galectin-1-induced HUVEC apoptosis in a dose-dependent manner as demonstrated by Annexin-V/7AAD staining. Interestingly, both down-regulation of CD146 cell surface expression using siRNA and antibody-mediated blockade of CD146 increase this apoptosis. Altogether, our results identify Galectin-1 as a novel ligand for CD146 and this interaction protects, in vitro, endothelial cells against apoptosis induced by Galectin-1.
Journal of Experimental Medicine | 2012
Marion Espeli; Menna R. Clatworthy; Susanne Bökers; Kate E. Lawlor; Antony J. Cutler; Frank Köntgen; Paul A. Lyons; Kenneth G C Smith
Expressing a wild mouse Fcgr2b promoter variant in C57BL/6 mice enhances germinal center responses and increases affinity maturation and autoantibody production.
Current Opinion in Immunology | 2010
Clatworthy; Marion Espeli; N Torpey; Kgc Smith
Donor-specific alloantibodies (DSA) mediate hyperacute and acute antibody-mediated rejection (AMR), which can lead to early graft damage and loss, and are also associated with chronic AMR and reduced long-term graft survival. Such alloantibodies can be generated by previous exposure to major histocompatibility (MHC) antigens (usually via blood transfusions, previous allografts or pregnancy) or can occur de novo after transplantation. Recent studies also suggest that non-MHC antibodies, including those recognising major histocompatibility complex class I-related chain A (MICA), MICB, vimentin, angiotensin II type I receptor may also have an adverse impact on allograft outcomes. In this review, we consider how the dose, route and context of antigen exposure influences DSA induction and describe factors which control the generation, maintenance and survival of alloantibody-producing plasma cells. Finally, we discuss the implications of these variables on therapeutic approaches to DSA.