Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marion Grasser is active.

Publication


Featured researches published by Marion Grasser.


Journal of Molecular Biology | 2009

Transcript elongation factor TFIIS is involved in Arabidopsis seed dormancy.

Marion Grasser; Caroline M. Kane; Thomas Merkle; Michael Melzer; Jeppe Emmersen; Klaus D. Grasser

Transcript elongation factor TFIIS promotes efficient transcription by RNA polymerase II, since it assists in bypassing blocks during mRNA synthesis. While yeast cells lacking TFIIS are viable, inactivation of mouse TFIIS causes embryonic lethality. Here, we have identified a protein encoded in the Arabidopsis genome that displays a marked sequence similarity to TFIIS of other organisms, primarily within domains II and III in the C-terminal part of the protein. TFIIS is widely expressed in Arabidopsis, and a green fluorescent protein-TFIIS fusion protein localises specifically to the cell nucleus. When expressed in yeast cells lacking the endogenous TFIIS, Arabidopsis TFIIS partially complements the sensitivity of mutant cells to the nucleotide analog 6-azauridine, which is a typical characteristic of transcript elongation factors. We have characterised Arabidopsis lines harbouring T-DNA insertions in the coding sequence of TFIIS. Plants homozygous for T-DNA insertions are viable, and genomewide transcript profiling revealed that compared to control plants, a relatively small number of genes are differentially expressed in mutant plants. TFIIS(-/-) plants display essentially normal development, but they flower slightly earlier than control plants and show clearly reduced seed dormancy. Plants with RNAi-mediated knockdown of TFIIS expression also are affected in seed dormancy. Therefore, TFIIS plays a critical role in Arabidopsis seed development.


Nucleic Acids Research | 2014

The transcript elongation factor SPT4/SPT5 is involved in auxin-related gene expression in Arabidopsis

Julius Dürr; Ihab Bishara Yousef Lolas; Brian B. Sørensen; Veit Schubert; Andreas Houben; Michael Melzer; Rainer Deutzmann; Marion Grasser; Klaus D. Grasser

The heterodimeric complex SPT4/SPT5 is a transcript elongation factor (TEF) that directly interacts with RNA polymerase II (RNAPII) to regulate messenger RNA synthesis in the chromatin context. We provide biochemical evidence that in Arabidopsis, SPT4 occurs in a complex with SPT5, demonstrating that the SPT4/SPT5 complex is conserved in plants. Each subunit is encoded by two genes SPT4-1/2 and SPT5-1/2. A mutant affected in the tissue-specifically expressed SPT5-1 is viable, whereas inactivation of the generally expressed SPT5-2 is homozygous lethal. RNAi-mediated downregulation of SPT4 decreases cell proliferation and causes growth reduction and developmental defects. These plants display especially auxin signalling phenotypes. Consistently, auxin-related genes, most strikingly AUX/IAA genes, are downregulated in SPT4–RNAi plants that exhibit an enhanced auxin response. In Arabidopsis nuclei, SPT5 clearly localizes to the transcriptionally active euchromatin, and essentially co-localizes with transcribing RNAPII. Typical for TEFs, SPT5 is found over the entire transcription unit of RNAPII-transcribed genes. In SPT4–RNAi plants, elevated levels of RNAPII and SPT5 are detected within transcribed regions (including those of downregulated genes), indicating transcript elongation defects in these plants. Therefore, SPT4/SPT5 acts as a TEF in Arabidopsis, regulating transcription during the elongation stage with particular impact on the expression of certain auxin-related genes.


PLOS ONE | 2013

Arabidopsis DEAD-Box RNA Helicase UAP56 Interacts with Both RNA and DNA as well as with mRNA Export Factors

Christine Kammel; Maren Thomaier; Brian B. Sørensen; Thomas Schubert; Gernot Längst; Marion Grasser; Klaus D. Grasser

The DEAD-box protein UAP56 (U2AF65-associcated protein) is an RNA helicase that in yeast and metazoa is critically involved in mRNA splicing and export. In Arabidopsis, two adjacent genes code for an identical UAP56 protein, and both genes are expressed. In case one of the genes is inactivated by a T-DNA insertion, wild type transcript level is maintained by the other intact gene. In contrast to other organisms that are severely affected by elevated UAP56 levels, Arabidopsis plants that overexpress UAP56 have wild type appearance. UAP56 localises predominantly to euchromatic regions of Arabidopsis nuclei, and associates with genes transcribed by RNA polymerase II independently from the presence of introns, while it is not detected at non-transcribed loci. Biochemical characterisation revealed that in addition to ssRNA and dsRNA, UAP56 interacts with dsDNA, but not with ssDNA. Moreover, the enzyme displays ATPase activity that is stimulated by RNA and dsDNA and it has ATP-dependent RNA helicase activity unwinding dsRNA, whereas it does not unwind dsDNA. Protein interaction studies showed that UAP56 directly interacts with the mRNA export factors ALY2 and MOS11, suggesting that it is involved in mRNA export from plant cell nuclei.


The Plant Cell | 2017

The Composition of the Arabidopsis RNA Polymerase II Transcript Elongation Complex Reveals the Interplay between Elongation and mRNA Processing Factors

Wojciech Antosz; Alexander Pfab; Hans Friedrich Ehrnsberger; Philipp Holzinger; Karin Köllen; Simon A. Mortensen; Astrid Bruckmann; Thomas Schubert; Gernot Längst; Joachim Griesenbeck; Veit Schubert; Marion Grasser; Klaus D. Grasser

The RNA polymerase II transcript elongation complex is an interaction site for transcript elongation factors, facilitating chromatin transcription and its coordination with mRNA processing. Transcript elongation factors (TEFs) are a heterogeneous group of proteins that control the efficiency of transcript elongation of subsets of genes by RNA polymerase II (RNAPII) in the chromatin context. Using reciprocal tagging in combination with affinity purification and mass spectrometry, we demonstrate that in Arabidopsis thaliana, the TEFs SPT4/SPT5, SPT6, FACT, PAF1-C, and TFIIS copurified with each other and with elongating RNAPII, while P-TEFb was not among the interactors. Additionally, NAP1 histone chaperones, ATP-dependent chromatin remodeling factors, and some histone-modifying enzymes including Elongator were repeatedly found associated with TEFs. Analysis of double mutant plants defective in different combinations of TEFs revealed genetic interactions between genes encoding subunits of PAF1-C, FACT, and TFIIS, resulting in synergistic/epistatic effects on plant growth/development. Analysis of subnuclear localization, gene expression, and chromatin association did not provide evidence for an involvement of the TEFs in transcription by RNAPI (or RNAPIII). Proteomics analyses also revealed multiple interactions between the transcript elongation complex and factors involved in mRNA splicing and polyadenylation, including an association of PAF1-C with the polyadenylation factor CstF. Therefore, the RNAPII transcript elongation complex represents a platform for interactions among different TEFs, as well as for coordinating ongoing transcription with mRNA processing.


Biochemistry | 2008

A novel family of plant DNA-binding proteins containing both HMG-box and AT-rich interaction domains

Frederik T. Hansen; Claus Krogh Madsen; Anne Mette Nordland; Marion Grasser; Thomas Merkle; Klaus D. Grasser

The A/T-rich interaction domain (ARID) and the HMG-box domain represent DNA-interaction modules that are found in sequence-specific as well as nonsequence-specific DNA-binding proteins. Both domains are found in a variety of DNA-interacting proteins in a wide range of eukaryotic organisms. Proteins that contain both an ARID and an HMG-box domain, here termed ARID-HMG proteins, appear to be specific for plants. This protein family is conserved in higher plants (both mono- and dicot plants) as well as lower plants such as the moss Physcomitrella. Since ARID-HMG proteins have not been studied experimentally, we have examined here two family members from Arabidopsis. The genes encoding ARID-HMG1 and ARID-HMG2 are widely expressed in Arabidopsis but at different levels. Subcellular localization experiments studying ARID-HMG1 and ARID-HMG2 fused to GFP by fluorescence microscopy show that both proteins localize primarily to cell nuclei. Analyses of the DNA-binding properties using electrophoretic mobility shift assays revealed that mediated by the HMG-box domain, ARID-HMG1 binds structure specifically to DNA minicircles. Mediated by the ARID, the protein binds preferentially to A/T-rich DNA, when compared with G/C-rich DNA. Therefore, both DNA-binding domains contribute to the DNA interactions of ARID-HMG1. Accordingly, the protein combines DNA-binding properties characteristic of ARID and HMG-box proteins.


FEBS Letters | 2011

Reduced expression of the DOG1 gene in Arabidopsis mutant seeds lacking the transcript elongation factor TFIIS

Simon A. Mortensen; Mads Sønderkær; Carina Lynggaard; Marion Grasser; Kåre Lehmann Nielsen; Klaus D. Grasser

TFIIS is a transcript elongation factor that facilitates transcription by RNA polymerase II through blocks to elongation. Arabidopsis plants lacking TFIIS are affected in seed dormancy, which represents a block to complete germination under favourable conditions. We have comparatively profiled the transcript levels of seeds of tfIIs mutants and control plants. Among the differentially expressed genes, the DOG1 gene was identified that is a QTL for seed dormancy. The reduced expression of DOG1 in tfIIs seeds was confirmed by quantitative RT‐PCR and Northern analyses, suggesting that down‐regulation of DOG1 expression is involved in the seed dormancy phenotype of tfIIs mutants.


FEBS Letters | 2015

The zinc-finger protein SPT4 interacts with SPT5L/KTF1 and modulates transcriptional silencing in Arabidopsis

Karin Köllen; Lena Dietz; Natacha Bies-Etheve; Thierry Lagrange; Marion Grasser; Klaus D. Grasser

TheArabidopsis multidomain protein SPT5L/KTF1 (which has similarity to the transcript elongation factor SPT5) associates with RNA polymerase V (RNAPV) and is an accessory factor in RNA‐directed DNA methylation. The zinc‐finger protein SPT4 was found to interact with SPT5L (and SPT5) both in vivo and in vitro. Here, we show that plants depleted of SPT4 relative to wild type display reduced DNA methylation and the locus specificity is shared with SPT5L, suggesting a cooperation of SPT4 and SPT5L. Unlike observed for SPT5, no reduced protein level of SPT5L is determined in SPT4‐deficient plants. These experiments demonstrate that in addition to the RNA polymerase II‐associated SPT4/SPT5 that is generally conserved in eukaryotes, flowering plants have SPT4/SPT5L that is involved in RNAPV‐mediated transcriptional silencing.


Transcription | 2018

The plant RNA polymerase II elongation complex: A hub coordinating transcript elongation and mRNA processing

Marion Grasser; Klaus D. Grasser

ABSTRACT Characterisation of the Arabidopsis RNA polymerase II (RNAPII) elongation complex revealed an assembly of a conserved set of transcript elongation factors associated with chromatin remodellers, histone modifiers as well as with various pre-mRNA splicing and polyadenylation factors. Therefore, transcribing RNAPII streamlines the processes of mRNA synthesis and processing in plants.


Plant Molecular Biology | 2017

The Arabidopsis THO/TREX component TEX1 functionally interacts with MOS11 and modulates mRNA export and alternative splicing events

Brian B. Sørensen; Hans Friedrich Ehrnsberger; Silvia Esposito; Alexander Pfab; Astrid Bruckmann; Judith Hauptmann; Gunter Meister; Rainer Merkl; Thomas Schubert; Gernot Längst; Michael Melzer; Marion Grasser; Klaus D. Grasser

Key messageWe identify proteins that associate with the THO core complex, and show that the TEX1 and MOS11 components functionally interact, affecting mRNA export and splicing as well as plant development.AbstractTREX (TRanscription-EXport) is a multiprotein complex that plays a central role in the coordination of synthesis, processing and nuclear export of mRNAs. Using targeted proteomics, we identified proteins that associate with the THO core complex of Arabidopsis TREX. In addition to the RNA helicase UAP56 and the mRNA export factors ALY2-4 and MOS11 we detected interactions with the mRNA export complex TREX-2 and multiple spliceosomal components. Plants defective in the THO component TEX1 or in the mRNA export factor MOS11 (orthologue of human CIP29) are mildly affected. However, tex1 mos11 double-mutant plants show marked defects in vegetative and reproductive development. In tex1 plants, the levels of tasiRNAs are reduced, while miR173 levels are decreased in mos11 mutants. In nuclei of mos11 cells increased mRNA accumulation was observed, while no mRNA export defect was detected with tex1 cells. Nevertheless, in tex1 mos11 double-mutants, the mRNA export defect was clearly enhanced relative to mos11. The subnuclear distribution of TEX1 substantially overlaps with that of splicing-related SR proteins and in tex1 plants the ratio of certain alternative splicing events is altered. Our results demonstrate that Arabidopsis TEX1 and MOS11 are involved in distinct steps of the biogenesis of mRNAs and small RNAs, and that they interact regarding some aspects, but act independently in others.


Plant Physiology | 2018

ALY RNA-binding proteins are required for nucleo-cytosolic mRNA transport and modulate plant growth and development

Christina Pfaff; Hans Friedrich Ehrnsberger; Maria Flores-Tornero; Brian B Soerensen; Thomas Schubert; Gernot Längst; Joachim Griesenbeck; Stefanie Sprunck; Marion Grasser; Klaus D. Grasser

Arabidopsis expresses four ALY family nuclear RNA-binding proteins that interact with the RNA helicase UAP56, and their depletion causes nuclear mRNA accumulation and developmental defects. The regulated transport of mRNAs from the cell nucleus to the cytosol is a critical step linking transcript synthesis and processing with translation. However, in plants, only a few of the factors that act in the mRNA export pathway have been functionally characterized. Flowering plant genomes encode several members of the ALY protein family, which function as mRNA export factors in other organisms. Arabidopsis (Arabidopsis thaliana) ALY1 to ALY4 are commonly detected in root and leaf cells, but they are differentially expressed in reproductive tissue. Moreover, the subnuclear distribution of ALY1/2 differs from that of ALY3/4. ALY1 binds with higher affinity to single-stranded RNA than double-stranded RNA and single-stranded DNA and interacts preferentially with 5-methylcytosine-modified single-stranded RNA. Compared with the full-length protein, the individual RNA recognition motif of ALY1 binds RNA only weakly. ALY proteins interact with the RNA helicase UAP56, indicating a link to the mRNA export machinery. Consistently, ALY1 complements the lethal phenotype of yeast cells lacking the ALY1 ortholog Yra1. Whereas individual aly mutants have a wild-type appearance, disruption of ALY1 to ALY4 in 4xaly plants causes vegetative and reproductive defects, including strongly reduced growth, altered flower morphology, as well as abnormal ovules and female gametophytes, causing reduced seed production. Moreover, polyadenylated mRNAs accumulate in the nuclei of 4xaly cells. Our results highlight the requirement of efficient mRNA nucleocytosolic transport for proper plant growth and development and indicate that ALY1 to ALY4 act partly redundantly in this process; however, differences in expression and subnuclear localization suggest distinct functions.

Collaboration


Dive into the Marion Grasser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gernot Längst

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Pfab

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge