Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marion Kirk is active.

Publication


Featured researches published by Marion Kirk.


Journal of Neurochemistry | 2002

Superoxide Dismutase Catalyzes Nitration of Tyrosines by Peroxynitrite in the Rod and Head Domains of Neurofilament‐L

John P. Crow; Yao Zu Ye; Michael J. Strong; Marion Kirk; Stephen Barnes; Joseph S. Beckman

Abstract: Superoxide dismutase (SOD) catalyzes the nitration of specific tyrosine residues in proteins by peroxynitrite (ONOO−), which may be the damaging gain‐of‐function resulting from mutations to SOD associated with familial amyotrophic lateral sclerosis (ALS). We found that disassembled neurofilament‐L (light subunit) was more susceptible to tyrosine nitration catalyzed by SOD in vitro. Neurofilament‐L was selectively nitrated compared with the majority of other proteins present in brain homogenates. Assembled neurofilament‐L was more resistant to nitration, suggesting that the susceptible tyrosine residues were protected by intersubunit contacts in assembled neurofilaments. Electrospray mass spectrometry of trypsin‐digested neurofilament‐L showed that tyrosine 17 in the head region and tyrosines 138, 177, and 265 in α‐helical coil regions of the rod domain of neurofilament‐L were particularly susceptible to SOD‐catalyzed nitration. Nitrated neurofilament‐L inhibited the assembly of unmodified neurofilament subunits, suggesting that the affected tyrosines are located in regions important for intersubunit contacts. Neurofilaments are major structural proteins expressed in motor neurons and known to be important for their survival in vivo. We suggest that SOD‐catalyzed nitration of neurofilament‐L may have a significant role in the pathogenesis of ALS.


Clinica Chimica Acta | 1996

Analysis of plasma isoflavones by reversed-phase HPLC-multiple reaction ion monitoring-mass spectrometry

Lori Coward; Marion Kirk; Nicolas Albin; Stephen Barnes

A HPLC-MS procedure for the rapid, sensitive and specific measurement of the isoflavones, daidzein, dihydrodaidzein, O-desmethylangolensin and genistein, in human plasma has been developed. Synthetic radiolabeled genistein conjugates were used for evaluation of optimum conditions for solid phase extraction. Biochanin A was added to plasma as a recovery marker for isoflavones and phenolphthalein glucuronide and 4-methylumbelliferone sulfate were added to ensure completeness of hydrolysis with beta-glucuronidase/sulfatase. Isoflavones in plasma extracts were separated using an isocratic HPLC method and analyzed by negative ion multiple reaction ion monitoring-mass spectrometry using a heated nebulizer-atmospheric pressure chemical ionization interface. Using plasma samples from four subjects consuming two servings a day of an isolated soy protein beverage for 14 days, the mean plasma genistein and daidzein concentrations were 556 and 345 nM, respectively. Within assay and between assay coefficients of variation for measurement of daidzein and genistein in five aliquots of the same plasma sample were 8.51% and 7.76%, and 5.98% and 6.12%, respectively.


Journal of Biological Chemistry | 2003

Nitric Oxide-dependent Generation of Reactive Species in Sickle Cell Disease ACTIN TYROSINE NITRATION INDUCES DEFECTIVE CYTOSKELETAL POLYMERIZATION

Mutay Aslan; Thomas M. Ryan; Tim M. Townes; Lori Coward; Marion Kirk; Stephen Barnes; C. Bruce Alexander; Steven S. Rosenfeld; Bruce A. Freeman

The intermittent vascular occlusion occurring in sickle cell disease (SCD) leads to ischemia-reperfusion injury and activation of inflammatory processes including enhanced production of reactive oxygen species and increased expression of inducible nitric-oxide synthase (NOS2). Appreciating that impaired nitric oxide-dependent vascular function and the concomitant formation of oxidizing and nitrating species occur in concert with increased rates of tissue reactive oxygen species production, liver and kidney NOS2 expression, tissue 3-nitrotyrosine (NO2Tyr) formation and apoptosis were evaluated in human SCD tissues and a murine model of SCD. Liver and kidney NOS2 expression and NO2Tyr immunoreactivity were significantly increased in SCD mice and humans, but not in nondiseased tissues. TdT-mediated nick end-label (TUNEL) staining showed apoptotic cells in regions expressing elevated levels of NOS2 and NO2Tyr in all SCD tissues. Gas chromatography mass spectrometry analysis revealed increased plasma protein NO2Tyr content and increased levels of hepatic and renal protein NO2Tyr derivatives in SCD (21.4 ± 2.6 and 37.5 ± 7.8 ng/mg) versus wild type mice (8.2 ± 2.2 and 10 ± 1.2 ng/mg), respectively. Western blot analysis and immunoprecipitation of SCD mouse liver and kidney proteins revealed one principal NO2Tyr-containing protein of 42 kDa, compared with controls. Enzymatic in-gel digestion and MALDI-TOF mass spectrometry identified this nitrated protein as actin. Electrospray ionization and fragment analysis by tandem mass spectrometry revealed that 3 of 15 actin tyrosine residues are nitrated (Tyr91, Tyr198, and Tyr240) at positions that significantly modify actin assembly. Confocal microscopy of SCD human and mouse tissues revealed that nitration led to morphologically distinct disorganization of filamentous actin. In aggregate, we have observed that the hemoglobin point mutation of sickle cell disease that mediates hemoglobin polymerization defects is translated, via inflammatory oxidant reactions, into defective cytoskeletal polymerization.


Free Radical Biology and Medicine | 2001

Antioxidant mechanisms of isoflavones in lipid systems: paradoxical effects of peroxyl radical scavenging

Rakesh P. Patel; Brenda J. Boersma; Jack H. Crawford; Neil Hogg; Marion Kirk; B. Kalyanaraman; Dale A. Parks; Stephen Barnes; Victor M. Darley-Usmar

Oxidation of lipids has been implicated in the pathophysiology of atherosclerosis. It has been suggested that scavenging of lipid peroxyl radicals contribute to the antiatherosclerotic effects of naturally occurring compounds such as the isoflavones. This group of polyphenolics includes genistein and is present in relatively high concentrations in food products containing soy. Soy isoflavones are capable of inhibiting lipoprotein oxidation in vitro and suppressing formation of plasma lipid oxidation products in vivo. However, key aspects of the antioxidant mechanisms remain unknown. In this study the antioxidant effects of genistein and other soy isoflavones on lipid peroxidation initiated by mechanistically diverse oxidants was investigated. Although isoflavones inhibited lipid peroxidation stimulated by both metal-dependent and independent processes, the concentration required for these effects were relatively high compared to those found in vivo. Interestingly, however, isoflavones were not consumed and remained in the native state over the time during which inhibition of lipid peroxidation was observed. This was also the case under conditions where synergistic inhibition of LDL oxidation was observed with ascorbate. Furthermore, in an oxidation system driven solely by peroxyl radicals, isoflavones were found to be relatively poor peroxyl radical scavengers. Consistent with the apparent lack of reactivity with lipid-derived oxidants, isoflavones were also relatively resistant to oxidation mediated by the potent oxidant peroxynitrite. The potential antioxidant mechanisms of isoflavones are discussed in the context of possible reactivities of isoflavone-derived phenoxyl radicals.


Journal of Biological Chemistry | 1998

Nitrosation of Uric Acid by Peroxynitrite FORMATION OF A VASOACTIVE NITRIC OXIDE DONOR

Kelly A. Skinner; C. Roger White; Rakesh P. Patel; Sidhartha Tan; Stephen Barnes; Marion Kirk; Victor M. Darley-Usmar; Dale A. Parks

Peroxynitrite (ONOO−), formed by the reaction between nitric oxide (·NO) and superoxide, has been implicated in the etiology of numerous disease processes. Low molecular weight antioxidants, including uric acid, may minimize ONOO−--mediated damage to tissues. The tissue-sparing effects of uric acid are typically attributed to oxidant scavenging; however, little attention has been paid to the biology of the reaction products. In this study, a previously unidentified uric acid derivative was detected in ONOO−-treated human plasma. The product of the uric acid/ONOO− reaction resulted in endothelium-independent vasorelaxation of rat thoracic aorta, with an EC50 value in the range of 0.03–0.3 μm. Oxyhemoglobin, a ·NO scavenger, completely attenuated detectable ·NO release and vascular relaxation. Uric acid plus decomposed ONOO− neither released ·NO nor altered vascular reactivity. Electrochemical quantification of ·NO confirmed that the uric acid/ONOO− reaction resulted in spontaneous (thiol-independent) and protracted (t½ ∼ 125 min) release of ·NO. Mass spectroscopic analysis indicated that the product was a nitrated uric acid derivative. The uric acid nitration/nitrosation product may play a pivotal role in human pathophysiology by releasing ·NO, which could decrease vascular tone, increase tissue blood flow, and thereby constitute a role for uric acid not previously described.


Archive | 1996

Soy Isoflavonoids and Cancer Prevention

Stephen Barnes; Jeff Sfakianos; Lori Coward; Marion Kirk

The isoflavonoids in soy, genistein and daidzein, have been proposed to contribute an important part of the anti-cancer effect of soy. Although there have been many interesting studies on the effects of isoflavones on biochemical targets in tissue culture experiments, in most cases the concentrations used by investigators have exceeded 10 μM. However, based on simple pharmacokinetic calculations involving daily intake of isoflavones, absorption from the gut, distribution to peripheral tissues, and excretion, it is unlikely that blood isoflavone concentrations even in high soy consumers could be greater than 1–5 μM. Experiments designed to evaluate these pharmacological principles were carried out in anesthetized rats with indwelling biliary catheters and in human volunteers consuming soy beverages. The data from these experiments indicate that genistein is efficiently absorbed from the gut, taken up by the liver and excreted in the bile as its 7-O-β-glucuronide. Re-infused genistein 7-O-β-glucuronide was also well absorbed from the gut, although this occurred in the distal small intestine. In human subjects fed a soy beverage for a period of two weeks, plasma levels of genistein and daidzein, determined by HPLC-mass spectrometry, ranged from 0.55–0.86 μM, mostly as glucuronide and sulfate conjugates. In summary, genistein is well absorbed from the small intestine and undergoes an enterohepatic circulation. Although the plasma genistein levels achievable with soy food feeding are unlikely to be sufficient to inhibit the growth of mature, established breast cancer cells by chemotherapeutic-like mechanisms, these levels are sufficient to regulate the proliferation of epithelial cells in the breast and thereby may cause a chemopreventive effect.


Experimental Biology and Medicine | 1998

HPLC-Mass Spectrometry Analysis of Isoflavones:

Stephen Barnes; Lori Coward; Marion Kirk; Jeff Sfakianos

Abstract The current interest in the role of dietary isoflavonoids, particularly the soy isoflavone genistein, in lowering the risk of several chronic diseases, has led to the need for rapid, sensitive and precise assays for isoflavones and their metabolites in food matrices and in various physiological fluids and tissues. HPLC has the advantage over GC-based methods in that all the conjugated and unconjugated isoflavonoids and their metabolites can be separated and analyzed without the need for derivatization. An important advance in mass spectrometry has been the introduction of effective interfaces between the HPLC and the mass spectrometer, namely the electrospray ionization (ESI) and the heated nebulizer-atmospheric pressure chemical ionization (HN-APCI) interfaces. Because of the isoflavonoid concentrations in fluids such as bile or urine, preliminary extraction, so essential for GC-MS and many other analytical methods, is not necessary. This immediately overcomes the thorny issue of finding an effective solid-phase extraction procedure. Using reversed-phase HPLC-ESI-MS, it is possible to obtain a mass/intensity map of all isoflavonoid metabolites in a single 20 min analysis. Analysis of isoflavonoid conjugates in serum/plasma samples requires initial extraction, but the conjugates can be measured intact either by capillary reversed-phase HPLC-ESI-MS or on regular reversed-phase columns by HPLC-HN-APCI-MS. In both cases, specificity is obtained by causing the parent isoflavonoid molecular ions to undergo collision-induced dissociation to form specific daughter ions in a triple quadrupole MS instrument. When it is only necessary to measure the total isoflavonoids and their metabolites in blood, hydrolysis can be performed directly in serum/plasma samples and isoflavonoids recovered by ether or ethyl acetate solvent extraction. The isoflavone aglucones can be analyzed by HPLC-MS under isocratic solvent conditions, thereby drastically shortening analysis time and opening up prospects for automation. Therefore, HPLC-MS is a technique that is broadly applicable to the major issues in phytoestrogen research.


Journal of Nutrition | 2004

Chemoprevention by Grape Seed Extract and Genistein in Carcinogen-induced Mammary Cancer in Rats Is Diet Dependent

Helen Kim; Patti Hall; Michelle Smith; Marion Kirk; Jeevan K. Prasain; Stephen Barnes; Clinton J. Grubbs

Many popular dietary supplements are enriched in polyphenols such as the soy isoflavones, tea catechins, and resveratrol (from grape skins), each of which has been shown to have chemopreventive activity in cellular models of cancer. The proanthocyanidins, which are oligomers of the catechins, are enriched in grape seeds and form the basis of the dietary supplement grape seed extract (GSE). Evidence suggests that the proanthocyanidins may be metabolized to the monomeric catechins. This study was carried out to determine whether GSE added to rodent diets protected against carcinogen-induced mammary tumorigenesis in rats and whether this was affected by the composition of the whole diet. Female rats were begun on 5%, 1.25%, or 0% (control) GSE-supplemented diets at age 35 d. At age 50 d they were administered 7,12-dimethylbenz[a]anthracene (DMBA) in sesame oil at 80 mg/kg body weight. They were weighed and monitored weekly for tumor development until 120 d after DMBA administration. Administration of GSE in AIN-76A diet did not show any protective activity of GSE against DMBA-induced breast cancer. However, administration of GSE in a laboratory dry food diet (Teklad 4% rodent diet) resulted in a 50% reduction in tumor multiplicity. In similar experiments, genistein administered in AIN-76A diet also failed to show chemopreventive activity against the carcinogen N-methyl-N-nitrosourea; however, when administered at the same dose in the Teklad 4% rodent diet, genistein exhibited significant chemopreventive activity (44-61%). These results demonstrate that GSE is chemopreventive in an animal model of breast cancer; moreover, the diet dependency of the chemopreventive activity for both GSE and genistein suggests that whether or not a compound is chemopreventive may depend on the diet in which the agent is administered.


Methods in Enzymology | 1999

Nitration of unsaturated fatty acids by nitric oxide-derived reactive species

Valerie Bridget O'Donnell; Jason P. Eiserich; Allison Bloodsworth; Phillip Chumley; Marion Kirk; Stephen Barnes; Victor M. Darley-Usmar; Bruce A. Freeman

Reactions of linoleate (and presumably other unsaturated fatty acids) with reactive nitrogen species that form in biological systems from secondary reactions of .NO yield two main nitration product groups, LNO2 (formed by ONOO-, .NO2, or NO2+ reaction with linoleate), and LONO2 (formed by HONO reaction with 13(S)-HPODE, or .NO termination with LOO.). Comparison of HPLC retention times and m/z for lipid nitration products indicate that the mechanisms of nitrated product formation converge at several points: (i) The initial product of HONO attack on LOOH will be LOONO, which is identical to the initial termination product of LOO. reaction with .NO. (ii) Dissociation of LOONO to give LO. and .NO2 via caged radicals, which recombine to give LONO2 (m/z 340) will occur, regardless of how LOONO is formed (Fig. 7). (iii) In some experiments, the reaction of O2- (where oxidation is initiated by xanthine oxidase-derived O2- production and metal-dependent decomposition of H2O2) with .NO will result in generation of ONOO-. Nitration of unsaturated lipid by this species will yield a species demonstrated herein to be LNO2. Lipid oxidation leads to formation of bioactive products, including hydroxides, hydroperoxides, and isoprostanes. In vivo, nitrated lipids (LNO2, LONO2) may also possess bioactivity, for example through eicosanoid receptor binding activity, or by acting as antagonists/competitive inhibitors of eicosanoid receptor-ligand interactions. In addition, nitrated lipids could mediate signal transduction via direct .NO donation, transnitrosation, or following reductive metabolism. Similar bioactive products are formed following ONOO- reaction with glucose, glycerol, and other biomolecules.


The American Journal of Clinical Nutrition | 1998

Metabolism of the isoflavones genistein and biochanin A in human breast cancer cell lines.

T G Peterson; G P Ji; Marion Kirk; Lori Coward; Charles N. Falany; Stephen Barnes

There is substantial variation in the growth inhibition of different human breast cancer cell lines by the isoflavones genistein and biochanin A. ZR-75-1 and BT-20 cells are > or = 2- to 4-fold less sensitive to these isoflavones than are MCF-7 cells, whereas T47D cells have a sensitivity similar to that of MCF-7 cells. To determine whether these differences are related to isoflavone metabolism by these cancer cells, each of the cell lines was incubated with [4-(14)C]genistein and [4-(14)C]biochanin A. Metabolites in the cell culture media were identified by radio-HPLC electrospray ionization mass spectrometry. One metabolite of genistein (genistein 7-sulfate) and 2 metabolites of biochanin A (genistein and genistein 7-sulfate) were detected by radio-HPLC. Further analysis by mass spectrometry identified 3 other metabolites, a hydroxylated methylated form of each isoflavone and a biochanin A sulfate. IC50 (the concentration at which the growth rate was halved) values of the breast cancer cell lines did not correlate well with production of genistein 7-sulfate from genistein or with biochanin A sulfate, genistein 7-sulfate, or genistein from biochanin A. However, IC50 values correlated with the production of the hydroxylated and methylated forms of the isoflavones. Only T47D cells produced these metabolites in this study, and only T47D cells had IC50 values similar to those of MCF-7 cells, which also produced the hydroxylated and methylated metabolites. These data suggest that the hydroxylated and methylated metabolites may be the active forms of genistein in human breast cancer cells and emphasize the importance of isoflavone metabolism in the mechanism of action of isoflavones.

Collaboration


Dive into the Marion Kirk's collaboration.

Top Co-Authors

Avatar

Stephen Barnes

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Lori Coward

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Victor M. Darley-Usmar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Landon Wilson

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Brenda J. Boersma

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen Kim

University of California

View shared research outputs
Top Co-Authors

Avatar

Robert F. Struck

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jan Novak

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge