Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marion Peyrou is active.

Publication


Featured researches published by Marion Peyrou.


British Journal of Pharmacology | 2012

Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats

Nicolas Deblon; Lucie Bourgoin; Christelle Veyrat-Durebex; Marion Peyrou; Manlio Vinciguerra; Aurélie Caillon; Christine Maeder; Margot Fournier; Xavier Montet; Françoise Rohner-Jeanrenaud; Michelangelo Foti

BACKGROUND AND PURPOSE mTOR inhibitors are currently used as immunosuppressants in transplanted patients and as promising anti‐cancer agents. However, new‐onset diabetes is a frequent complication occurring in patients treated with mTOR inhibitors such as rapamycin (Sirolimus). Here, we investigated the mechanisms associated with the diabetogenic effects of chronic Sirolimus administration in rats and in in vitro cell cultures.


PLOS ONE | 2009

Fibrogenic potential of human multipotent mesenchymal stromal cells in injured liver.

Reto M. Baertschiger; Véronique Serre-Beinier; Philippe Morel; Domenico Bosco; Marion Peyrou; Sophie Clément; Antonino Sgroi; André Kaelin; Leo H. Buhler; Carmen Gonelle-Gispert

Multipotent mesenchymal stromal cells (MSC) are currently investigated clinically as cellular therapy for a variety of diseases. Differentiation of MSC toward endodermal lineages, including hepatocytes and their therapeutic effect on fibrosis has been described but remains controversial. Recent evidence attributed a fibrotic potential to MSC. As differentiation potential might be dependent of donor age, we studied MSC derived from adult and pediatric human bone marrow and their potential to differentiate into hepatocytes or myofibroblasts in vitro and in vivo. Following characterization, expanded adult and pediatric MSC were co-cultured with a human hepatoma cell line, Huh-7, in a hepatogenic differentiation medium containing Hepatocyte growth factor, Fibroblast growth factor 4 and oncostatin M. In vivo, MSC were transplanted into spleen or liver of NOD/SCID mice undergoing partial hepatectomy and retrorsine treatment. Expression of mesenchymal and hepatic markers was analyzed by RT-PCR, Western blot and immunohistochemistry. In vitro, adult and pediatric MSC expressed characteristic surface antigens of MSC. Expansion capacity of pediatric MSC was significantly higher when compared to adult MSC. In co-culture with Huh-7 cells in hepatogenic differentiation medium, albumin expression was more frequently detected in pediatric MSC (5/8 experiments) when compared to adult MSC (2/10 experiments). However, in such condition pediatric MSC expressed alpha smooth muscle more strongly than adult MSC. Stable engraftment in the liver was not achieved after intrasplenic injection of pediatric or adult MSC. After intrahepatic injection, MSC permanently remained in liver tissue, kept a mesenchymal morphology and expressed vimentin and alpha smooth muscle actin, but no hepatic markers. Further, MSC localization merges with collagen deposition in transplanted liver and no difference was observed using adult or pediatric MSC. In conclusion, when transplanted into an injured or regenerating liver, MSC differentiated into myofibroblasts with development of fibrous tissue, regardless of donor age. These results indicate that MSC in certain circumstances might be harmful due to their fibrogenic potential and this should be considered before potential use of MSC for cell therapy.


Journal of Hepatology | 2009

Unsaturated fatty acids promote hepatoma proliferation and progression through downregulation of the tumor suppressor PTEN

Manlio Vinciguerra; Fabio Carrozzino; Marion Peyrou; Sebastiano Carlone; Roberto Montesano; Roberto Benelli; Michelangelo Foti

BACKGROUND/AIMS The impact of dietary fatty acids on the development of cancers is highly controversial. We recently demonstrated that unsaturated fatty acids trigger the downregulation of the tumor suppressor PTEN through an mTOR/NF-kappaB-dependent mechanism in hepatocytes. In this study, we investigated whether unsaturated fatty acids promote hepatoma progression by downregulating PTEN expression. METHODS The effects of fatty acids and PTEN-specific siRNAs on proliferation, invasiveness and gene expression were assessed using HepG2 hepatoma cells. The tumor promoting activity of unsaturated fatty acids was evaluated in vivo using HepG2 xenografts in nude mice. RESULTS Incubation of HepG2 cells with unsaturated fatty acids, or PTEN-specific siRNAs, increased cell proliferation, cell migration and invasiveness, and altered the expression of genes involved in inflammation, epithelial-to-mesenchymal transition and carcinogenesis. These effects were dependent on PTEN expression levels and were prevented by mTOR and NF-kappaB inhibitors. Consistent with these data, the development and size of subcutaneous HepG2-derived tumors in nude mice xenografts were dramatically increased when mice were fed with an oleic acid-enriched diet, even in the absence of weight gain. CONCLUSIONS These data demonstrate that dietary unsaturated fatty acids promote hepatoma progression by reducing the expression of the tumor suppressor PTEN.


Hepatology | 2011

Down‐regulation of phosphatase and tensin homolog by hepatitis C virus core 3a in hepatocytes triggers the formation of large lipid droplets

Sophie Clément; Marion Peyrou; Andrea Sanchez-Pareja; Lucie Bourgoin; Pierluigi Ramadori; David M. Suter; Manlio Vinciguerra; Kévin Guilloux; Stéphanie Pascarella; Laura Rubbia-Brandt; Francesco Negro; Michelangelo Foti

Hepatitis C virus (HCV) perturbs the hosts lipid metabolism and often results in hepatic steatosis. In nonalcoholic fatty liver disease, the intrahepatic down‐regulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a critical mechanism leading to steatosis and its progression toward fibrosis and hepatocellular carcinoma. However, whether an HCV infection triggers the formation of large lipid droplets through PTEN‐dependent mechanisms is unknown. We assessed PTEN expression in the livers of patients infected with HCV genotype 1 or 3 with or without steatosis. The role of PTEN in the HCV‐induced biogenesis of lipid droplets was further investigated in vitro with hepatoma cells transduced with the HCV core protein of genotype 1b or 3a. Our data indicate that PTEN expression was down‐regulated at the posttranscriptional level in steatotic patients infected with genotype 3a. Similarly, the in vitro expression of the HCV genotype 3a core protein (but not 1b), typically leading to the appearance of large lipid droplets, down‐regulated PTEN expression by a mechanism involving a microRNA‐dependent blockade of PTEN messenger RNA translation. PTEN down‐regulation promoted in turn a reduction of insulin receptor substrate 1 (IRS1) expression. Interestingly, either PTEN or IRS1 overexpression prevented the development of large lipid droplets, and this indicates that the down‐regulation of both PTEN and IRS1 is required to affect the biogenesis of lipid droplets. However, IRS1 knockdown per se did not alter the morphology of lipid droplets, and this suggests that other PTEN‐dependent mechanisms are involved in this process. Conclusion: The down‐regulation of PTEN and IRS1 is a critical event leading to the HCV genotype 3a–induced formation of large lipid droplets in hepatocytes. (HEPATOLOGY 2011;)


Nature Communications | 2016

The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes.

Tania Quesada-López; Rubén Cereijo; Jean Valéry Turatsinze; Anna Planavila; Montserrat Cairó; Aleix Gavaldà-Navarro; Marion Peyrou; Ricardo Moure; Roser Iglesias; Marta Giralt; Decio L. Eizirik; Francesc Villarroya

The thermogenic activity of brown adipose tissue (BAT) and browning of white adipose tissue are important components of energy expenditure. Here we show that GPR120, a receptor for polyunsaturated fatty acids, promotes brown fat activation. Using RNA-seq to analyse mouse BAT transcriptome, we find that the gene encoding GPR120 is induced by thermogenic activation. We further show that GPR120 activation induces BAT activity and promotes the browning of white fat in mice, whereas GRP120-null mice show impaired cold-induced browning. Omega-3 polyunsaturated fatty acids induce brown and beige adipocyte differentiation and thermogenic activation, and these effects require GPR120. GPR120 activation induces the release of fibroblast growth factor-21 (FGF21) by brown and beige adipocytes, and increases blood FGF21 levels. The effects of GPR120 activation on BAT activation and browning are impaired in FGF21-null mice and cells. Thus, the lipid sensor GPR120 activates brown fat via a mechanism that involves induction of FGF21.


PLOS ONE | 2013

Immunopositivity for Histone MacroH2A1 Isoforms Marks Steatosis-Associated Hepatocellular Carcinoma.

Francesca Rappa; Azzura Greco; Christine Podrini; Francesco Cappello; Michelangelo Foti; Lucie Bourgoin; Marion Peyrou; Arianna Marino; Nunzia Scibetta; Roger Williams; Gianluigi Mazzoccoli; Massimo Federici; Valerio Pazienza; Manlio Vinciguerra

Background Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Prevention and risk reduction are important and the identification of specific biomarkers for early diagnosis of HCC represents an active field of research. Increasing evidence indicates that fat accumulation in the liver, defined as hepatosteatosis, is an independent and strong risk factor for developing an HCC. MacroH2A1, a histone protein generally associated with the repressed regions of chromosomes, is involved in hepatic lipid metabolism and is present in two alternative spliced isoforms, macroH2A1.1 and macroH2A1.2. These isoforms have been shown to predict lung and colon cancer recurrence but to our knowledge, their role in fatty-liver associated HCC has not been investigated previously. Methods We examined macroH2A1.1 and macroH2A1.2 protein expression levels in the liver of two murine models of fat-associated HCC, the high fat diet/diethylnistrosamine (DEN) and the phosphatase and tensin homolog (PTEN) liver specific knock-out (KO) mouse, and in human liver samples of subjects with steatosis or HCC, using immunoblotting and immunohistochemistry. Results Protein levels for both macroH2A1 isoforms were massively upregulated in HCC, whereas macroH2A1.2 was specifically upregulated in steatosis. In addition, examination of human liver samples showed a significant difference (p<0.01) in number of positive nuclei in HCC (100% of tumor cells positive for either macroH2A1.1 or macroH2A1.2), when compared to steatosis (<2% of hepatocytes positive for either isoform). The steatotic areas flanking the tumors were highly immunopositive for macroH2A1.1 and macroH2A1.2. Conclusions These data obtained in mice and humans suggest that both macroH2A1 isoforms may play a role in HCC pathogenesis and moreover may be considered as novel diagnostic markers for human HCC.


Digestive Diseases | 2010

PTEN in Non-Alcoholic Fatty Liver Disease/Non-Alcoholic Steatohepatitis and Cancer

Marion Peyrou; Lucie Bourgoin; Michelangelo Foti

The tumor suppressor PTEN is a protein/phosphoinositide phosphatase regulating the PI3K/Akt signaling pathway and is mutated or deleted in a variety of human cancers, including hepatocellular carcinoma (HCC). Accumulating evidence indicates that alterations of PTEN expression and activity in hepatocytes are common and recurrent molecular events associated with liver disorders of various etiologies including obesity, the metabolic syndrome, hepatitis B virus/hepatitis C virus infection and abusive alcohol consumption. Genetic and molecular studies, particularly in the context of non-alcoholic fatty liver disease (NAFLD), support a critical role for PTEN in hepatic insulin sensitivity and the development of steatosis, steatohepatitis and fibrosis. PTEN mutations/deletion or low PTEN expression are also associated with diverse liver malignancies, suggesting a critical role for PTEN in hepatic cancers. This review provides an overview of the current knowledge on pathological dysregulations of PTEN expression/activity in the liver with obesity and the metabolic syndrome, and the role of this enzyme in the development of non-alcoholic fatty liver disease and hepatocellular carcinoma.


Ppar Research | 2012

PPARs in Liver Diseases and Cancer: Epigenetic Regulation by MicroRNAs

Marion Peyrou; Pierluigi Ramadori; Lucie Bourgoin; Michelangelo Foti

Peroxisome-proliferator-activated receptors (PPARs) are ligand-activated nuclear receptors that exert in the liver a transcriptional activity regulating a whole spectrum of physiological functions, including cholesterol and bile acid homeostasis, lipid/glucose metabolism, inflammatory responses, regenerative mechanisms, and cell differentiation/proliferation. Dysregulations of the expression, or activity, of specific PPAR isoforms in the liver are therefore believed to represent critical mechanisms contributing to the development of hepatic metabolic diseases, disorders induced by hepatic viral infections, and hepatocellular adenoma and carcinoma. In this regard, specific PPAR agonists have proven to be useful to treat these metabolic diseases, but for cancer therapies, the use of PPAR agonists is still debated. Interestingly, in addition to previously described mechanisms regulating PPARs expression and activity, microRNAs are emerging as new important regulators of PPAR expression and activity in pathophysiological conditions and therefore may represent future therapeutic targets to treat hepatic metabolic disorders and cancers. Here, we reviewed the current knowledge about the general roles of the different PPAR isoforms in common chronic metabolic and infectious liver diseases, as well as in the development of hepatic cancers. Recent works highlighting the regulation of PPARs by microRNAs in both physiological and pathological situations with a focus on the liver are also discussed.


Journal of Hepatology | 2015

Hepatic PTEN deficiency improves muscle insulin sensitivity and decreases adiposity in mice

Marion Peyrou; Lucie Bourgoin; Anne-Laure Poher; Jordi Altirriba; Christine Maeder; Aurélie Caillon; Margot Fournier; Xavier Montet; Françoise Rohner-Jeanrenaud; Michelangelo Foti

BACKGROUND & AIMS PTEN is a dual lipid/protein phosphatase, downregulated in steatotic livers with obesity or HCV infection. Liver-specific PTEN knockout (LPTEN KO) mice develop steatosis, inflammation/fibrosis and hepatocellular carcinoma with aging, but surprisingly also enhanced glucose tolerance. This study aimed at understanding the mechanisms by which hepatic PTEN deficiency improves glucose tolerance, while promoting fatty liver diseases. METHODS Control and LPTEN KO mice underwent glucose/pyruvate tolerance tests and euglycemic-hyperinsulinemic clamps. Body fat distribution was assessed by EchoMRI, CT-scan and dissection analyses. Primary/cultured hepatocytes and insulin-sensitive tissues were analysed ex vivo. RESULTS PTEN deficiency in hepatocytes led to steatosis through increased fatty acid (FA) uptake and de novo lipogenesis. Although LPTEN KO mice exhibited hepatic steatosis, they displayed increased skeletal muscle insulin sensitivity and glucose uptake, as assessed by euglycemic-hyperinsulinemic clamps. Surprisingly, white adipose tissue (WAT) depots were also drastically reduced. Analyses of key enzymes involved in lipid metabolism further indicated that FA synthesis/esterification was decreased in WAT. In addition, Ucp1 expression and multilocular lipid droplet structures were observed in this tissue, indicating the presence of beige adipocytes. Consistent with a liver to muscle/adipocyte crosstalk, the expression of liver-derived circulating factors, known to impact on muscle insulin sensitivity and WAT homeostasis (e.g. FGF21), was modulated in LPTEN KO mice. CONCLUSIONS Although steatosis develops in LPTEN KO mice, PTEN deficiency in hepatocytes promotes a crosstalk between liver and muscle, as well as adipose tissue, resulting in enhanced insulin sensitivity, improved glucose tolerance and decreased adiposity.


Journal of Hepatology | 2013

PTEN protein phosphatase activity regulates hepatitis C virus secretion through modulation of cholesterol metabolism

Marion Peyrou; Sophie Clément; Christiane Maier; Lucie Bourgoin; Emilie Branche; Stéphanie Conzelmann; V. Kaddai; Michelangelo Foti; Francesco Negro

BACKGROUND & AIMS Hepatitis C virus (HCV) infection is dependent on lipid metabolism. Hepatocyte steatosis occurs frequently in HCV infection, but the relationship between steatosis and HCV life cycle is unclear. We showed that HCV induces steatosis via the downregulation of the phosphatase and tensin homolog deleted on chromosome 10 (PTEN). We here investigated how PTEN may affect HCV production. METHODS The effect of overexpression or silencing of PTEN on HCV secretion was assessed in genomic-length Jc1 infected HuH7 cells. The role of PTEN protein and lipid phosphatase activities on lipid metabolism and infectious viral particle secretion was investigated using dominant-negative PTEN mutants. The importance of cholesterol metabolism for PTEN-dependent lipid droplet biogenesis and viral particle secretion was examined using statins. RESULTS PTEN silencing in Jc1 infected HuH7 cells stimulated HCV particle secretion, while PTEN overexpression decreased virus egress. Viral secretion was also increased by overexpression of protein phosphatase-deleted (PTENY138L), but not lipid phosphatase-deleted (PTENG129E), PTEN mutant, thus indicating that the protein phosphatase activity of PTEN controls viral secretion. Similarly, PTENY138L, but not PTENG129E mutant induced the formation of large lipid droplets. PTENY138L mutant did not affect biosynthesis of triglycerides, but promoted the biosynthesis of cholesterol esters. Consistently, statins prevented the increased cholesterol ester production, large lipid droplet formation, and viral secretion in cells expressing the PTENY138L mutant. CONCLUSIONS Downregulation of PTEN protein phosphatase activity by HCV affects cholesterol metabolism, thereby inducing the appearance of large lipid droplets and increasing virion egress.

Collaboration


Dive into the Marion Peyrou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge