Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marion R. Van Horn is active.

Publication


Featured researches published by Marion R. Van Horn.


Frontiers in Cellular Neuroscience | 2013

D-serine as a gliotransmitter and its roles in brain development and disease

Marion R. Van Horn; Mari Sild; Edward S. Ruthazer

The development of new techniques to study glial cells has revealed that they are active participants in the development of functional neuronal circuits. Calcium imaging studies demonstrate that glial cells actively sense and respond to neuronal activity. Glial cells can produce and release neurotransmitter-like molecules, referred to as gliotransmitters, that can in turn influence the activity of neurons and other glia. One putative gliotransmitter, D-serine is believed to be an endogenous co-agonist for synaptic N-methyl-D-aspartate receptors (NMDARs), modulating synaptic transmission and plasticity mediated by this receptor. The observation that D-serine levels in the mammalian brain increase during early development, suggests a possible role for this gliotransmitter in normal brain development and circuit refinement. In this review we will examine the data that D-serine and its associated enzyme serine racemase are developmentally regulated. We will consider the evidence that D-serine is actively released by glial cells and examine the studies that have implicated D-serine as a critical player involved in regulating NMDAR-mediated synaptic transmission and neuronal migration during development. Furthermore, we will consider how dysregulation of D-serine may play an important role in the etiology of neurological and psychiatric diseases.


European Journal of Neuroscience | 2011

The neural control of fast vs. slow vergence eye movements

Kathleen E. Cullen; Marion R. Van Horn

When looking between targets located in three‐dimensional space, information about relative depth is sent from the visual cortex to the motor control centers in the brainstem, which are responsible for generating appropriate motor commands to move the eyes. Surprisingly, how the neurons in the brainstem use the depth information supplied by the visual cortex to precisely aim each eye on a visual target remains highly controversial. This review will consider the results of recent studies that have focused on determining how individual neurons contribute to realigning gaze when we look between objects located at different depths. In particular, the results of new experiments provide compelling evidence that the majority of saccadic neurons dynamically encode the movement of an individual eye, and show that the time‐varying discharge of the saccadic neuron population encodes the drive required to account for vergence facilitation during disconjugate saccades. Notably, these results suggest that an additional input (i.e. from a separate vergence subsystem) is not required to shape the activity of motoneurons during disconjugate saccades. Furthermore, whereas motoneurons drive both fast and slow vergence movements, saccadic neurons discharge only during fast vergence movements, emphasizing the existence of distinct premotor pathways for controlling fast vs. slow vergence. Taken together, these recent findings contradict the traditional view that the brain is circuited with independent pathways for conjugate and vergence control, and thus provide an important new insight into how the brain controls three‐dimensional gaze shifts.


Progress in Brain Research | 2008

Neuronal evidence for individual eye control in the primate cMRF.

David M. Waitzman; Marion R. Van Horn; Kathleen E. Cullen

Previous single unit recordings and electrical stimulation have suggested that separate regions of the MRF participate in the control of vergence and conjugate eye movements. Neurons in the supraoculomotor area (SOA) have been found to encode symmetric vergence [Zhang, Y. et al. (1992). J. Neurophysiol., 67: 944-960] while neurons in the central MRF, the cMRF, located ventral to the SOA and lateral to the oculomotor nucleus are associated with conjugate eye movements [Waitzman, D.M. et al. (1996). J. Neurophysiol., 75(4): 1546-1572]. However, it remains unknown if cMRF neurons are strictly associated with conjugate movements since eye movements were recorded with a single eye coil in monkeys viewing visual stimuli at a distance of at least 50 cm. In the current study we addressed whether neurons in the cMRF might also encode vergence-related information. Interestingly, electrical stimulation elicited disconjugate saccades (contralateral eye moved more than the ipsilateral eye) from locations previously thought to elicit only conjugate saccades. Single unit recordings in this same area made in two rhesus monkeys trained to follow visual stimuli moved rapidly in depth along the axis of sight of an individual eye demonstrate that cMRF neurons do not simply encode conjugate information during disconjugate saccades; in fact our findings provide evidence that cMRF neurons are most closely associated with the movement of an individual eye. These results support the hypothesis that the midbrain shapes the activity of the pre-motor saccadic neurons by encoding integrated conjugate and vergence commands.


The Journal of Neuroscience | 2012

Coding of microsaccades in three-dimensional space by premotor saccadic neurons.

Marion R. Van Horn; Kathleen E. Cullen

Microsaccades are small, involuntary eye movements that are produced during fixation. While accurate visual perception requires precise binocular coordination during fixation, previous studies of the neural control of microsaccades measured the movement of one eye only. Here we show how premotor saccadic neurons control these small fixational eye movements in three-dimensional space. Microsaccadic eye movements, produced by monkeys trained to fixate targets presented at different depths, were similarly distributed in three-dimensional space during both near and far viewing. Single unit recordings of the neural activity of premotor neurons further revealed that the brainstem saccadic circuitry controls these minute disconjugate shifts of gaze by preferentially encoding the dynamic movement of an individual eye (i.e., integrated control of conjugate and vergence motion). These findings challenge the traditional notion that microsaccades are strictly conjugate and have important implications for studies that use microsaccades to evaluate visual and attentional processing, as well as certain neurological disorders.


Journal of Neurophysiology | 2009

Dynamic Characterization of Agonist and Antagonist Oculomotoneurons During Conjugate and Disconjugate Eye Movements

Marion R. Van Horn; Kathleen E. Cullen

In this report, we provide the first quantitative characterization of the relationship between the spike train dynamics of medial rectus oculomotoneurons (OMNs) and eye movements during conjugate and disconjugate saccades. We show that a simple, first-order model (i.e., containing eye position and velocity terms) provided an adequate model of neural discharges during both on and off-directed conjugate saccades, while a second-order model, which included a decaying slide term, significantly improved the ability to fit neuronal responses by approximately 10% (P<0.05). To understand how the same neurons drove disconjugate eye movements, we evaluated whether sensitivities estimated during conjugate saccades could be used to predict responses during disconjugate saccades. For the majority of neurons (68%), a conjugate-based model failed, and instead neurons preferentially encoded the position and velocity of the ipsilateral eye. Similar to our previous results with abducens motoneurons, we also found that position and velocity sensitivities of OMNs decreased with increasing velocity, and the simulated population drive of OMNs during disconjugate saccades was less (approximately 10%) than during conjugate saccades. Taken together, our results provide evidence that the activation of the antagonist, as well as agonist, motoneuron pools must be considered to understand the neural control of horizontal eye movements across different oculomotor behaviors. Moreover, we propose that the undersampling of smaller motoneurons (e.g., nontwitch) was likely to account for the missing drive observed during disconjugate saccades; these cells are thought to be more specialized for vergence movements and thus could provide the additional input required to command disconjugate eye movements.


The Journal of Neuroscience | 2013

Vergence Neurons Identified in the Rostral Superior Colliculus Code Smooth Eye Movements in 3D Space

Marion R. Van Horn; David M. Waitzman; Kathleen E. Cullen

The rostral superior colliculus (rSC) encodes position errors for multiple types of eye movements, including microsaccades, small saccades, smooth pursuit, and fixation. Here we address whether the rSC contributes to the development of neural signals that are suitable for controlling vergence eye movements. We use both single-unit recording and microstimulation techniques in monkey to answer this question. We found that vergence eye movements can be evoked using microstimulation in the rSC. Moreover, among the previously described neurons in rSC, we recorded a novel population of neurons that either increased (i.e., convergence neurons) or decreased (i.e., divergence neurons) their activity during vergence eye movements. In particular, these neurons dynamically encoded changes in vergence angle during vergence tracking, fixation in 3D space and the slow binocular realignment that occurs after disconjugate saccades, but were completely unresponsive during conjugate or the rapid component of disconjugate saccades (i.e., fast vergence) and conjugate smooth pursuit. Together, our microstimulation and single-neuron results suggest that the SC plays a role in the generation of signals required to precisely align the eyes toward targets in 3D space. We propose that accurate maintenance of 3D eye position, critical for the perception of stereopsis, may be mediated via the rSC.


Analytical Chemistry | 2014

Disk-Shaped Amperometric Enzymatic Biosensor for in Vivo Detection of d-serine

David Polcari; Annie Kwan; Marion R. Van Horn; Laurence Danis; Loredano Pollegioni; Edward S. Ruthazer; Janine Mauzeroll

At the synapse, D-serine is an endogenous co-agonist for the N-methyl-D-aspartate receptor (NMDAR). It plays an important role in synaptic transmission and plasticity and has also been linked to several pathological diseases such as schizophrenia and Huntingtons. The quantification of local changes in D-serine concentration is essential to further understanding these processes. We report herein the development of a disk-shaped amperometric enzymatic biosensor for detection of D-serine based on a 25 μm diameter platinum disk microelectrode with an electrodeposited poly-m-phenylenediamine (PPD) layer and an R. gracilis D-amino acid oxidase (RgDAAO) layer. The disk-shaped D-serine biosensor is 1-5 orders of magnitude smaller than previously reported probes and exhibits a sensitivity of 276 μA cm(-2) mM(-1) with an in vitro detection limit of 0.6 μM. We demonstrate its usefulness for in vivo applications by measuring the release of endogenous D-serine in the brain of Xenopus laevis tadpoles.


The Journal of Neuroscience | 2010

Local Neural Processing and the Generation of Dynamic Motor Commands within the Saccadic Premotor Network

Marion R. Van Horn; Diana E. Mitchell; Corentin Massot; Kathleen E. Cullen

The ability to accurately control movement requires the computation of a precise motor command. However, the computations that take place within premotor pathways to determine the dynamics of movements are not understood. Here we studied the local processing that generates dynamic motor commands by simultaneously recording spikes and local field potentials (LFPs) in the network that commands saccades. We first compared the information encoded by LFPs and spikes recorded from individual premotor and motoneurons (saccadic burst neurons, omnipause neurons, and motoneurons) in monkeys. LFP responses consistent with net depolarizations occurred in association with bursts of spiking activity when saccades were made in a neurons preferred direction. In contrast, when saccades were made in a neurons nonpreferred direction, neurons ceased spiking and the associated LFP responses were consistent with net hyperpolarizations. Surprisingly, hyperpolarizing and depolarizing LFPs encoded movement dynamics with equal robustness and accuracy. Second, we compared spiking responses at one hierarchical level of processing to LFPs at the next stage. Latencies and spike-triggered averages of LFP responses were consistent with each neurons place within this circuit. LFPs reflected relatively local events (<500 μm) and encoded important features not available from the spiking train (i.e., hyperpolarizing response). Notably, quantification of their time-varying profiles revealed that a precise balance of depolarization and hyperpolarization underlies the production of precise saccadic eye movement commands at both motor and premotor levels. Overall, simultaneous recordings of LFPs and spiking responses provides an effective means for evaluating the local computations that take place to produce accurate motor commands.


The Journal of Neuroscience | 2013

Astrocytes Use a Novel Transporter to Fill Gliotransmitter Vesicles with d-Serine: Evidence for Vesicular Synergy

Mari Sild; Marion R. Van Horn

Glia cells play an active role in regulating and maintaining basic brain function. Through the release of various signaling molecules, known as gliotransmitters, they can influence the activity of neighboring neurons and other glia. d-serine and glutamate are two well studied putative


The Journal of Neuroscience | 2017

The gliotransmitter D-serine promotes synapse maturation and axonal stabilization in vivo

Marion R. Van Horn; Arielle Strasser; Loïs S. Miraucourt; Loredano Pollegioni; Edward S. Ruthazer

The NMDAR is thought to play a key role in the refinement of connectivity in developing neural circuits. Pharmacological blockade or genetic loss-of-function manipulations that prevent NMDAR function during development result in the disorganization of topographic axonal projections. However, because NMDARs contribute to overall glutamatergic neurotransmission, such loss-of-function experiments fail to adequately distinguish between the roles played by NMDARs and neural activity in general. The gliotransmitter d-serine is a coagonist of the NMDAR that is required for NMDAR channel opening, but which cannot mediate neurotransmission on its own. Here we demonstrate that acute administration of d-serine has no immediate effect on glutamate release or AMPA-mediated neurotransmission. We show that endogenous d-serine is normally present below saturating levels in the developing visual system of the Xenopus tadpole. Using an amperometric enzymatic biosensor, we demonstrate that glutamatergic activation elevates ambient endogenous d-serine levels in the optic tectum. Chronically elevating levels of d-serine promoted synaptic maturation and resulted in the hyperstabilization of developing axon branches in the tadpole visual system. Conversely, treatment with an enzyme that degrades endogenous d-serine resulted in impaired synaptic maturation. Despite the reduction in axon arbor complexity seen in d-serine-treated animals, tectal neuron visual receptive fields were expanded, suggesting a failure to prune divergent retinal inputs. Together, these findings positively implicate NMDAR-mediated neurotransmission in developmental synapse maturation and the stabilization of axonal inputs and reveal a potential role for d-serine as an endogenous modulator of circuit refinement. SIGNIFICANCE STATEMENT Activation of NMDARs is critical for the activity-dependent development and maintenance of highly organized topographic maps. d-Serine, a coagonist of the NMDAR, plays a significant role in modulating NMDAR-mediated synaptic transmission and plasticity in many brain areas. However, it remains unknown whether d-serine participates in the establishment of precise neuronal connections during development. Using an in vivo model, we show that glutamate receptor activation can evoke endogenous d-serine release, which promotes glutamatergic synapse maturation and stabilizes axonal structural and functional inputs. These results reveal a pivotal modulatory role for d-serine in neurodevelopment.

Collaboration


Dive into the Marion R. Van Horn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward S. Ruthazer

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Mari Sild

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Anne Schohl

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Waitzman

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Arielle Strasser

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Dantong Jia

Montreal Neurological Institute and Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge