Marion S. Ratterree
Tulane University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marion S. Ratterree.
Journal of Virology | 2000
Farshad Guirakhoo; R. Weltzin; Thomas J. Chambers; Zhenxi Zhang; Kenneth F. Soike; Marion S. Ratterree; Juan Arroyo; K. Georgakopoulos; John Catalan; Thomas P. Monath
ABSTRACT A chimeric yellow fever (YF)-dengue type 2 (dengue-2) virus (ChimeriVax-D2) was constructed using a recombinant cDNA infectious clone of a YF vaccine strain (YF 17D) as a backbone into which we inserted the premembrane (prM) and envelope (E) genes of dengue-2 virus (strain PUO-218 from a case of dengue fever in Bangkok, Thailand). The chimeric virus was recovered from the supernatant of Vero cells transfected with RNA transcripts and amplified once in these cells to yield a titer of 6.3 log10 PFU/ml. The ChimeriVax-D2 was not neurovirulent for 4-week-old outbred mice inoculated intracerebrally. This virus was evaluated in rhesus monkeys for its safety (induction of viremia) and protective efficacy (induction of anti-dengue-2 neutralizing antibodies and protection against challenge). In one experiment, groups of non-YF-immune monkeys received graded doses of ChimeriVax-D2; a control group received only the vaccine diluents. All monkeys (except the control group) developed a brief viremia and showed no signs of illness. Sixty-two days postimmunization, animals were challenged with 5.0 log10focus forming units (FFU) of a wild-type dengue-2 virus. No viremia (<1.7 log10 FFU/ml) was detected in any vaccinated group, whereas all animals in the placebo control group developed viremia. All vaccinated monkeys developed neutralizing antibodies in a dose-dependent response. In another experiment, viremia and production of neutralizing antibodies were determined in YF-immune monkeys that received either ChimeriVax-D2 or a wild-type dengue-2 virus. Low viremia was detected in ChimeriVax-D2-inoculated monkeys, whereas all dengue-2-immunized animals became viremic. All of these animals were protected against challenge with a wild-type dengue-2 virus, whereas all YF-immune monkeys and nonimmune controls became viremic upon challenge. Genetic stability of ChimeriVax-D2 was assessed by continuous in vitro passage in VeroPM cells. The titer of ChimeriVax-D2, the attenuated phenotype for 4-week-old mice, and the sequence of the inserted prME genes were unchanged after 18 passages in Vero cells. The high replication efficiency, attenuation phenotype in mice and monkeys, immunogenicity and protective efficacy, and genomic stability of ChimeriVax-D2 justify it as a novel vaccine candidate to be evaluated in humans.
Journal of Virology | 2001
Farshad Guirakhoo; Juan Arroyo; Konstantin V. Pugachev; Chuck Miller; Zhenxi Zhang; R. Weltzin; K. Georgakopoulos; John Catalan; Simeon W. Ocran; Kenneth F. Soike; Marion S. Ratterree; Thomas P. Monath
ABSTRACT We previously reported construction of a chimeric yellow fever-dengue type 2 virus (YF/DEN2) and determined its safety and protective efficacy in rhesus monkeys (F. Guirakhoo et al., J. Virol. 74:5477–5485, 2000). In this paper, we describe construction of three additional YF/DEN chimeras using premembrane (prM) and envelope (E) genes of wild-type (WT) clinical isolates: DEN1 (strain PUO359, isolated in 1980 in Thailand), DEN3 (strain PaH881/88, isolated in 1988 in Thailand), and DEN4 (strain 1228, isolated in 1978 in Indonesia). These chimeric viruses (YF/DEN1, YF/DEN3, and YF/DEN4) replicated to ∼7.5 log10 PFU/ml in Vero cells, were not neurovirulent in 3- to 4-week-old ICR mice inoculated by the intracerebral route, and were immunogenic in monkeys. All rhesus monkeys inoculated subcutaneously with one dose of these chimeric viruses (as monovalent or tetravalent formulation) developed viremia with magnitudes similar to that of the YF 17D vaccine strain (YF-VAX) but significantly lower than those of their parent WT viruses. Eight of nine monkeys inoculated with monovalent YF/DEN1 -3, or -4 vaccine and six of six monkeys inoculated with tetravalent YF/DEN1-4 vaccine seroconverted after a single dose. When monkeys were boosted with a tetravalent YF/DEN1-4 dose 6 months later, four of nine monkeys in the monovalent YF/DEN groups developed low levels of viremia, whereas no viremia was detected in any animals previously inoculated with either YF/DEN1-4 vaccine or WT DEN virus. An anamnestic response was observed in all monkeys after the second dose. No statistically significant difference in levels of neutralizing antibodies was observed between YF virus-immune and nonimmune monkeys which received the tetravalent YF/DEN1-4 vaccine or between tetravalent YF/DEN1-4-immune and nonimmune monkeys which received the YF-VAX. However, preimmune monkeys developed either no detectable viremia or a level of viremia lower than that in nonimmune controls. This is the first recombinant tetravalent dengue vaccine successfully evaluated in nonhuman primates.
Journal of Virology | 2004
Juan Arroyo; Chuck Miller; John Catalan; Gwendolyn A. Myers; Marion S. Ratterree; Dennis W. Trent; Thomas P. Monath
ABSTRACT The availability of ChimeriVax vaccine technology for delivery of flavivirus protective antigens at the time West Nile (WN) virus was first detected in North America in 1999 contributed to the rapid development of the vaccine candidate against WN virus described here. ChimeriVax-Japanese encephalitis (JE), the first live- attenuated vaccine developed with this technology has successfully undergone phase I and II clinical trials. The ChimeriVax technology utilizes yellow fever virus (YF) 17D vaccine strain capsid and nonstructural genes to deliver the envelope gene of other flaviviruses as live-attenuated chimeric viruses. Amino acid sequence homology between the envelope protein (E) of JE and WN viruses facilitated targeting attenuating mutation sites to develop the WN vaccine. Here we discuss preclinical studies with the ChimeriVax-WN virus in mice and macaques. ChimeriVax-WN virus vaccine is less neurovirulent than the commercial YF 17D vaccine in mice and nonhuman primates. Attenuation of the virus is determined by the chimeric nature of the construct containing attenuating mutations in the YF 17D virus backbone and three point mutations introduced to alter residues 107, 316, and 440 in the WN virus E protein gene. The safety, immunogenicity, and efficacy of the ChimeriVax-WN02 vaccine in the macaque model indicate the vaccine candidate is expected to be safe and immunogenic for humans.
Journal of Virology | 2000
Thomas P. Monath; I. Levenbook; Kenneth F. Soike; Zhenxi Zhang; Marion S. Ratterree; Ken Draper; Alan D. T. Barrett; Richard A. Nichols; R. Weltzin; Juan Arroyo; Farshad Guirakhoo
ABSTRACT ChimeriVax-JE is a live, attenuated recombinant virus prepared by replacing the genes encoding two structural proteins (prM and E) of yellow fever 17D virus with the corresponding genes of an attenuated strain of Japanese encephalitis virus (JE), SA14-14-2 (T. J. Chambers et al., J. Virol. 73:3095–3101, 1999). Since the prM and E proteins contain antigens conferring protective humoral and cellular immunity, the immune response to vaccination is directed principally at JE. The prM-E genome sequence of the ChimeriVax-JE in diploid fetal rhesus lung cells (FRhL, a substrate acceptable for human vaccines) was identical to that of JE SA14-14-2 vaccine and differed from sequences of virulent wild-type strains (SA14 and Nakayama) at six amino acid residues in the envelope gene (E107, E138, E176, E279, E315, and E439). ChimeriVax-JE was fully attenuated for weaned mice inoculated by the intracerebral (i.c.) route, whereas commercial yellow fever 17D vaccine (YF-Vax) caused lethal encephalitis with a 50% lethal dose of 1.67 log10 PFU. Groups of four rhesus monkeys were inoculated by the subcutaneous route with 2.0, 3.0, 4.0, and 5.0 log10PFU of ChimeriVax-JE. All 16 monkeys developed low viremias (mean peak viremia, 1.7 to 2.1 log10 PFU/ml; mean duration, 1.8 to 2.3 days). Neutralizing antibodies appeared between days 6 and 10; by day 30, neutralizing antibody responses were similar across dose groups. Neutralizing antibody titers to the homologous (vaccine) strain were higher than to the heterologous wild-type JE strains. All immunized monkeys and sham-immunized controls were challenged i.c. on day 54 with 5.2 log10 PFU of wild-type JE. None of the immunized monkeys developed viremia or illness and had mild residual brain lesions, whereas controls developed viremia, clinical encephalitis, and severe histopathologic lesions. Immunized monkeys developed significant (≥4-fold) increases in serum and cerebrospinal fluid neutralizing antibodies after i.c. challenge. In a standardized test for neurovirulence, ChimeriVax-JE and YF-Vax were compared in groups of 10 monkeys inoculated i.c. and analyzed histopathologically on day 30. Lesion scores in brains and spinal cord were significantly higher for monkeys inoculated with YF-Vax. ChimeriVax-JE meets preclinical safety and efficacy requirements for a human vaccine; it appears safer than yellow fever 17D vaccine but has a similar profile of immunogenicity and protective efficacy.
PLOS ONE | 2012
Monica E. Embers; Stephen W. Barthold; Juan T. Borda; Lisa C. Bowers; Lara A. Doyle; Emir Hodzic; Mary B. Jacobs; Nicole R. Hasenkampf; Dale S. Martin; Sukanya Narasimhan; Kathrine Phillippi-Falkenstein; Jeanette E. Purcell; Marion S. Ratterree; Mario T. Philipp
The persistence of symptoms in Lyme disease patients following antibiotic therapy, and their causes, continue to be a matter of intense controversy. The studies presented here explore antibiotic efficacy using nonhuman primates. Rhesus macaques were infected with B. burgdorferi and a portion received aggressive antibiotic therapy 4–6 months later. Multiple methods were utilized for detection of residual organisms, including the feeding of lab-reared ticks on monkeys (xenodiagnosis), culture, immunofluorescence and PCR. Antibody responses to the B. burgdorferi-specific C6 diagnostic peptide were measured longitudinally and declined in all treated animals. B. burgdorferi antigen, DNA and RNA were detected in the tissues of treated animals. Finally, small numbers of intact spirochetes were recovered by xenodiagnosis from treated monkeys. These results demonstrate that B. burgdorferi can withstand antibiotic treatment, administered post-dissemination, in a primate host. Though B. burgdorferi is not known to possess resistance mechanisms and is susceptible to the standard antibiotics (doxycycline, ceftriaxone) in vitro, it appears to become tolerant post-dissemination in the primate host. This finding raises important questions about the pathogenicity of antibiotic-tolerant persisters and whether or not they can contribute to symptoms post-treatment.
The Journal of Infectious Diseases | 2010
Noton K. Dutta; Smriti Mehra; Peter J. Didier; Chad J. Roy; Lara A. Doyle; Xavier Alvarez; Marion S. Ratterree; Nicholas A. Be; Gyanu Lamichhane; Sanjay K. Jain; Michelle Lacey; Andrew A. Lackner; Deepak Kaushal
BACKGROUND Tuberculosis (TB) leads to the death of 1.7 million people annually. The failure of the bacille Calmette-Guérin vaccine, synergy between AIDS and TB, and the emergence of drug resistance have worsened this situation. It is imperative to delineate the mechanisms employed by Mycobacterium tuberculosis to successfully infect and persist in mammalian lungs. METHODS Nonhuman primates (NHPs) are arguably the best animal system to model critical aspects of human TB. We studied genes essential for growth and survival of M. tuberculosis in the lungs of NHPs experimentally exposed to aerosols of an M. tuberculosis transposon mutant library. RESULTS Mutants in 108 M. tuberculosis genes (33.13% of all genes tested) were attenuated for in vivo growth. Comparable studies have reported the attenuation of only approximately 6% of mutants in mice. The M. tuberculosis mutants attenuated for in vivo survival in primates were involved in the transport of various biomolecules, including lipid virulence factors; biosynthesis of cell-wall arabinan and peptidoglycan; DNA repair; sterol metabolism; and mammalian cell entry. CONCLUSIONS Our study highlights the various virulence mechanisms employed by M. tuberculosis to overcome the hostile environment encountered during infection of primates. Prophylactic approaches aimed against bacterial factors that respond to such in vivo stressors have the potential to prevent infection at an early stage, thus likely reducing the extent of transmission of M. tuberculosis.
The Journal of Infectious Diseases | 2001
Mario T. Philipp; Lisa C. Bowers; Paul T Fawcett; Mary B. Jacobs; Fang Ting Liang; Adriana Marques; Paul D. Mitchell; Jeanette E. Purcell; Marion S. Ratterree; Reinhard K. Straubinger
Invariable region (IR)(6), an immunodominant conserved region of VlsE, the antigenic variation protein of Borrelia burgdorferi, is currently used for the serologic diagnosis of Lyme disease in humans and canines. A longitudinal assessment of anti-IR(6) antibody levels in B. burgdorferi-infected rhesus monkeys revealed that this level diminished sharply after antibiotic treatment (within 25 weeks). In contrast, antibody levels to P39 and to whole-cell antigen extracts of B. burgdorferi either remained unchanged or diminished less. A longitudinal analysis in dogs yielded similar results. In humans, the anti-IR(6) antibody titer diminished by a factor of > or =4 in successfully treated patients and by a factor of <4 in treatment-resistant patients. This result suggests that the quantification of anti-IR(6) antibody titer as a function of time should be investigated further as a test to assess response to Lyme disease therapy or to determine whether a B. burgdorferi infection has been eliminated.
The Journal of Infectious Diseases | 2004
Marion S. Ratterree; Robin A. Gutierrez; Amelia Travassos da Rosa; Bruce J. Dille; David W. C. Beasley; Rudolf P. Bohm; Suresh M. Desai; Peter J. Didier; Larry G. Bikenmeyer; George J. Dawson; Thomas P. Leary; Gerald Schochetman; Katherine Katherine; Juan Arroyo; Alan D. T. Barrett; Robert B. Tesh
Reports of transfusion-associated cases of West Nile virus (WNV) infection indicate the need for sensitive screening methods to identify WNV-infected blood products. We experimentally infected 5 rhesus macaques with WNV, to determine the level and duration of viremia, the kinetics of the humoral immune response, and the sensitivity of various assay systems for detecting WNV in blood. All macaques developed subclinical infections with low levels of viremia; nested reverse-transcription polymerase chain reaction was the most sensitive method for detecting virus or viral RNA in blood. Specific WNV antibodies appeared during the second week of infection; the results of an IgM enzyme-linked immunosorbent assay became positive on the ninth or tenth day after infection, followed in 1-2 days by hemagglutination-inhibiting and neutralizing antibodies. Our results suggest that both nucleic acid and serological testing may be needed to determine exposure to WNV and to identify potentially infected blood donors.
Journal of Clinical Microbiology | 2004
David W. C. Beasley; Amelia Travassos da Rosa; Lark L. Coffey; Anne Sophie Carrara; Kathrine Phillippi-Falkenstein; Rudolf P. Bohm; Marion S. Ratterree; Kristy M. Lillibridge; George V. Ludwig; Jose G. Estrada-Franco; Scott C. Weaver; Robert B. Tesh; Robert E. Shope; Alan D. T. Barrett
ABSTRACT Serological diagnosis of West Nile virus (WNV) infection is complicated by extensive antigenic cross-reactivity with other closely related flaviviruses, such as St. Louis encephalitis virus. Here we describe a recombinant, bacterially expressed antigen equivalent to structural domain III of the WNV envelope protein that has allowed clear discrimination of antibody responses to WNV from those against other related flaviviruses in indirect enzyme-linked immunosorbent assays using standardized control antisera and field-collected samples.
Fertility and Sterility | 2002
Nucharin Songsasen; Il Jeoung Yu; Marion S. Ratterree; Catherine A. VandeVoort; S.P. Leibo
OBJECTIVE To determine the effects of chilling on the organization and distribution of tubulin and chromosomes in rhesus monkey oocytes. DESIGN Comparative laboratory study. SETTING Academic research laboratory. ANIMAL(S) Eight adult female rhesus monkeys (Macaca mulatta) aged 6-16 years. INTERVENTION(S) A total of 171 oocytes retrieved from eight rhesus monkeys were separated into nine groups. One group of control oocytes was held at 37 degrees C during the experiment. Four groups of oocytes were rapidly cooled to 0 degrees C and held for 1, 5, 10, or 30 minutes and then fixed and stained. Four other groups of oocytes were cooled to 0 degrees C, held for 1, 5, 10, or 30 minutes, warmed and incubated at 37 degrees C for 60 minutes, and then fixed and stained. MAIN OUTCOME MEASURE(S) Organization of cytoskeleton and chromosomes. RESULT(S) Exposure of rhesus oocytes to 0 degrees C for only 1 minute resulted in complete depolymerization of tubulin. Incubation of chilled oocytes at 37 degrees C for 60 minutes caused partial restoration of tubulin, although most oocytes exhibited abnormal alignment of chromosomes and disorganized meiotic spindles. CONCLUSION(S) We conclude that rhesus monkey oocytes are extremely sensitive to chilling injury. Their successful cryopreservation may require rapid cooling to outpace this injury.