Marion Schmidt
Albert Einstein College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marion Schmidt.
Molecular Cell | 2002
David S. Leggett; John Hanna; Anna Borodovsky; Bernat Crosas; Marion Schmidt; Rohan T. Baker; Thomas Walz; Hidde L. Ploegh; Daniel Finley
We have identified proteins that are abundant in affinity-purified proteasomes, but absent from proteasomes as previously defined because elevated salt concentrations dissociate them during purification. The major components are a deubiquitinating enzyme (Ubp6), a ubiquitin-ligase (Hul5), and an uncharacterized protein (Ecm29). Ecm29 tethers the proteasome core particle to the regulatory particle. Proteasome binding activates Ubp6 300-fold and is mediated by the ubiquitin-like domain of Ubp6, which is required for function in vivo. Ubp6 recognizes the proteasome base and its subunit Rpn1, suggesting that proteasome binding positions Ubp6 proximally to the substrate translocation channel. ubp6Delta mutants exhibit accelerated turnover of ubiquitin, indicating that deubiquitination events catalyzed by Ubp6 prevent translocation of ubiquitin into the proteolytic core particle.
Nature Cell Biology | 1999
Beate Braun; Michael H. Glickman; Regine Kraft; Burkhardt Dahlmann; Peter-M. Kloetzel; Daniel Finley; Marion Schmidt
Protein substrates of the proteasome must apparently be unfolded and translocated through a narrow channel to gain access to the proteolytic active sites of the enzyme. Protein folding in vivo is mediated by molecular chaperones. Here, to test for chaperone activity of the proteasome, we assay the reactivation of denatured citrate synthase. Both human and yeast proteasomes stimulate the recovery of the native structure of citrate synthase. We map this chaperone-like activity to the base of the regulatory particle of the proteasome, that is, to the ATPase-containing assembly located at the substrate-entry ports of the channel. Denatured but not native citrate synthase is bound by the base complex. Ubiquitination of citrate synthase is not required for its binding or refolding by the base complex of the proteasome. These data suggest a model in which ubiquitin–protein conjugates are initially tethered to the proteasome by specific recognition of their ubiquitin chains; this step is followed by a nonspecific interaction between the base and the target protein, which promotes substrate unfolding and translocation.
Cell | 2006
Bernat Crosas; John Hanna; Donald S. Kirkpatrick; Dan Phoebe Zhang; Yoshiko Tone; Nathaniel A. Hathaway; Christa Buecker; David S. Leggett; Marion Schmidt; Randall W. King; Steven P. Gygi; Daniel Finley
The ubiquitin ligase Hul5 was recently identified as a component of the proteasome, a multisubunit protease that degrades ubiquitin-protein conjugates. We report here a proteasome-dependent conjugating activity of Hul5 that endows proteasomes with the capacity to extend ubiquitin chains. hul5 mutants show reduced degradation of multiple proteasome substrates in vivo, suggesting that the polyubiquitin signal that targets substrates to the proteasome can be productively amplified at the proteasome. However, the products of Hul5 conjugation are subject to disassembly by a proteasome-bound deubiquitinating enzyme, Ubp6. A hul5 null mutation suppresses a ubp6 null mutation, suggesting that a balance of chain-extending and chain-trimming activities is required for proper proteasome function. As the association of Hul5 with proteasomes was found to be strongly stabilized by Ubp6, these enzymes may be situated in proximity to one another. We propose that through dynamic remodeling of ubiquitin chains, proteasomes actively regulate substrate commitment to degradation.
The EMBO Journal | 1996
Gunter Schmidtke; Regine Kraft; Susanne Kostka; Petra Henklein; Cornelius Frömmel; Jan Löwe; Robert Huber; Peter-Michael Kloetzel; Marion Schmidt
Maturation of eukaryotic 20S proteasomes involves the processing of beta‐subunits by limited proteolysis. To study the processing mechanism we analysed different point mutations of the beta‐subunit LMP2 in transfected human T2 cells. Here we show that the presence of the intact Gly‐1Thr1 consensus motif and Lys33 are essential for correct processing. Mutation of Thr1, the active site residue in mature subunits, or of Lys33, results in complete inhibition of processing at the consensus site. In addition, proprotein processing in vitro of wild‐type LMP2, incorporated in immature 16S precursor complexes, can be blocked by a proteasome‐specific inhibitor. While the processing of inhibitor‐treated wild‐type proprotein was completely prevented, the site‐directed mutagenesis of LMP2 results in processing intermediates carrying an extension of 8–10 residues preceding Thr1, suggesting an additional cleavage event within the prosequence. Furthermore, exchange of mammalian prosequences interferes with processing efficiency and suggests subunit specificity. Based on our data we propose a model for self‐activation of proteasomal beta‐subunits in which residue Thr1 serves as nucleophile and Lys33 as proton donor/acceptor. We provide evidence that subunit processing of mammalian beta‐subunits proceeds via a novel ordered two‐step mechanism involving autocatalysis.
Biochimica et Biophysica Acta | 2014
Marion Schmidt; Daniel Finley
The ubiquitin-proteasome system (UPS) is the primary selective degradation system in the nuclei and cytoplasm of eukaryotic cells, required for the turnover of myriad soluble proteins. The hundreds of factors that comprise the UPS include an enzymatic cascade that tags proteins for degradation via the covalent attachment of a poly-ubiquitin chain, and a large multimeric enzyme that degrades ubiquitinated proteins, the proteasome. Protein degradation by the UPS regulates many pathways and is a crucial component of the cellular proteostasis network. Dysfunction of the ubiquitination machinery or the proteolytic activity of the proteasome is associated with numerous human diseases. In this review we discuss the contributions of the proteasome to human pathology, describe mechanisms that regulate the proteolytic capacity of the proteasome, and discuss strategies to modulate proteasome function as a therapeutic approach to ameliorate diseases associated with altered UPS function. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Biological Chemistry | 2005
Marion Schmidt; John Hanna; Suzanne Elsasser; Daniel Finley
Abstract The proteasome is a compartmentalized, ATP-dependent protease composed of more than 30 subunits that recognizes and degrades polyubiquitinated substrates. Despite its physiological importance, many aspects of the proteasomes structural organization and regulation remain poorly understood. In addition to the proteins that form the proteasome holocomplex, there is increasing evidence that proteasomal function is affected by a wide variety of associating proteins. A group of ubiquitin-binding proteins assist in delivery of substrates to the proteasome, whereas proteasome-associated ubiquitin ligases and deubiquitinating enzymes may alter the dynamics of ubiquitin chains already associated with the proteasome. Some proteins appear to influence the overall stability of the complex, and still others have the capacity to activate or inhibit the hydrolytic activity of the core particle. The increasing number of interacting proteins identified suggests that proteasomes, as they exist in the cell, are larger and more diverse in composition than previously assumed. Thus, the study of proteasome-associated proteins will lead to new perspectives on the dynamics of this uniquely complex proteolytic machine.
Nature Structural & Molecular Biology | 2005
Marion Schmidt; Wilhelm Haas; Bernat Crosas; Patricia G. Santamaria; Steven P. Gygi; Thomas Walz; Daniel Finley
Proteasome activity is fine-tuned by associating the proteolytic core particle (CP) with stimulatory and inhibitory complexes. Although several mammalian regulatory complexes are known, knowledge of yeast proteasome regulators is limited to the 19-subunit regulatory particle (RP), which confers ubiquitin-dependence on proteasomes. Here we describe an alternative proteasome activator from Saccharomyces cerevisiae, Blm10. Synthetic interactions between blm10Δ and other mutations that impair proteasome function show that Blm10 functions together with proteasomes in vivo. This large, internally repetitive protein is found predominantly within hybrid Blm10–CP–RP complexes, representing a distinct pool of mature proteasomes. EM studies show that Blm10 has a highly elongated, curved structure. The near-circular profile of Blm10 adapts it to the end of the CP cylinder, where it is properly positioned to activate the CP by opening the axial channel into its proteolytic chamber.
PLOS Genetics | 2011
Undine Kruegel; Brett Robison; Thomas Dange; Günther Kahlert; Joe R. Delaney; Soumya Kotireddy; Mitsuhiro Tsuchiya; Scott Tsuchiyama; Christopher J. Murakami; Jennifer Schleit; George L. Sutphin; Daniel B. Carr; Krisztina Tar; Gunnar Dittmar; Matt Kaeberlein; Brian K. Kennedy; Marion Schmidt
Aging is characterized by the accumulation of damaged cellular macromolecules caused by declining repair and elimination pathways. An integral component employed by cells to counter toxic protein aggregates is the conserved ubiquitin/proteasome system (UPS). Previous studies have described an age-dependent decline of proteasomal function and increased longevity correlates with sustained proteasome capacity in centenarians and in naked mole rats, a long-lived rodent. Proof for a direct impact of enhanced proteasome function on longevity, however, is still lacking. To determine the importance of proteasome function in yeast aging, we established a method to modulate UPS capacity by manipulating levels of the UPS–related transcription factor Rpn4. While cells lacking RPN4 exhibit a decreased non-adaptable proteasome pool, loss of UBR2, an ubiquitin ligase that regulates Rpn4 turnover, results in elevated Rpn4 levels, which upregulates UPS components. Increased UPS capacity significantly enhances replicative lifespan (RLS) and resistance to proteotoxic stress, while reduced UPS capacity has opposing consequences. Despite tight transcriptional co-regulation of the UPS and oxidative detoxification systems, the impact of proteasome capacity on lifespan is independent of the latter, since elimination of Yap1, a key regulator of the oxidative stress response, does not affect lifespan extension of cells with higher proteasome capacity. Moreover, since elevated proteasome capacity results in improved clearance of toxic huntingtin fragments in a yeast model for neurodegenerative diseases, we speculate that the observed lifespan extension originates from prolonged elimination of damaged proteins in old mother cells. Epistasis analyses indicate that proteasome-mediated modulation of lifespan is at least partially distinct from dietary restriction, Tor1, and Sir2. These findings demonstrate that UPS capacity determines yeast RLS by a mechanism that is distinct from known longevity pathways and raise the possibility that interventions to promote enhanced proteasome function will have beneficial effects on longevity and age-related disease in humans.
Nature | 2009
Soyeon Park; Jeroen Roelofs; Woong Kim; Jessica Robert; Marion Schmidt; Steven P. Gygi; Daniel Finley
Substrates of the proteasome are recognized and unfolded by the regulatory particle, and then translocated into the core particle (CP) to be degraded. A hetero-hexameric ATPase ring, containing subunits Rpt1-6, is situated within the base subassembly of the regulatory particle. The ATPase ring sits atop the CP, with the Rpt carboxy termini inserted into pockets in the CP. Here we identify a previously unknown function of the Rpt proteins in proteasome biogenesis through deleting the C-terminal residue from each Rpt in the yeast Saccharomyces cerevisiae. Our results indicate that assembly of the hexameric ATPase ring is templated on the CP. We have also identified an apparent intermediate in base assembly, BP1, which contains Rpn1, three Rpts and Hsm3, a chaperone for base assembly. The Rpt proteins with the strongest assembly phenotypes, Rpt4 and Rpt6, were absent from BP1. We propose that Rpt4 and Rpt6 form a nucleating complex to initiate base assembly, and that this complex is subsequently joined by BP1 to complete the Rpt ring. Our studies show that assembly of the proteasome base is a rapid yet highly orchestrated process.
Methods in Enzymology | 2005
Suzanne Elsasser; Marion Schmidt; Daniel Finley
Several features of the proteasome make it an excellent subject for analysis by native gel electrophoresis: its size, the multiplicity of variant complexes having proteasome activity, the ease of in-gel assays for proteasome activity, and even its relatively high cellular abundance. Accordingly, native gels have been used to analyze the composition, assembly, gating activity, and binding characteristics of the proteasome. This chapter describes methods for preparing, running, and developing native gels and the proteasome species that are routinely visualized. Additionally, the use of native gels to resolve proteasome complexes present in lysate and to characterize proteasome ligands are described. Following native gel electrophoresis, secondary analyses can be performed, such as activating the core particle, making specific activity assessments, Western blotting of the native gel, resolving native complexes with subsequent SDS-PAGE, and protein identification by mass spectrometry.