Mariona Graupera
Queen Mary University of London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mariona Graupera.
Nature Reviews Molecular Cell Biology | 2010
Bart Vanhaesebroeck; Julie Guillermet-Guibert; Mariona Graupera; Benoit Bilanges
Phosphoinositide 3-kinases (PI3Ks) function early in intracellular signal transduction pathways and affect many biological functions. A further level of complexity derives from the existence of eight PI3K isoforms, which are divided into class I, class II and class III PI3Ks. PI3K signalling has been implicated in metabolic control, immunity, angiogenesis and cardiovascular homeostasis, and is one of the most frequently deregulated pathways in cancer. PI3K inhibitors have recently entered clinical trials in oncology. A better understanding of how the different PI3K isoforms are regulated and control signalling could uncover their roles in pathology and reveal in which disease contexts their blockade could be most beneficial.
Nature | 2008
Mariona Graupera; Julie Guillermet-Guibert; Lazaros C. Foukas; Li-Kun Phng; Robert J. Cain; Ashreena Salpekar; Wayne Pearce; Stephen Meek; Jaime Millan; Pedro R. Cutillas; Andrew Smith; Anne J. Ridley; Christiana Ruhrberg; Holger Gerhardt; Bart Vanhaesebroeck
Phosphoinositide 3-kinases (PI3Ks) signal downstream of multiple cell-surface receptor types. Class IA PI3K isoforms couple to tyrosine kinases and consist of a p110 catalytic subunit (p110α, p110β or p110δ), constitutively bound to one of five distinct p85 regulatory subunits. PI3Ks have been implicated in angiogenesis, but little is known about potential selectivity among the PI3K isoforms and their mechanism of action in endothelial cells during angiogenesis in vivo. Here we show that only p110α activity is essential for vascular development. Ubiquitous or endothelial cell-specific inactivation of p110α led to embryonic lethality at mid-gestation because of severe defects in angiogenic sprouting and vascular remodelling. p110α exerts this critical endothelial cell-autonomous function by regulating endothelial cell migration through the small GTPase RhoA. p110α activity is particularly high in endothelial cells and preferentially induced by tyrosine kinase ligands (such as vascular endothelial growth factor (VEGF)-A). In contrast, p110β in endothelial cells signals downstream of G-protein-coupled receptor (GPCR) ligands such as SDF-1α, whereas p110δ is expressed at low level and contributes only minimally to PI3K activity in endothelial cells. These results provide the first in vivo evidence for p110-isoform selectivity in endothelial PI3K signalling during angiogenesis.
Development | 2011
Denise Stenzel; Andrea Lundkvist; Dominique Sauvaget; Marta Busse; Mariona Graupera; Arjan van der Flier; Errol S. Wijelath; Jacqueline Murray; Michael Sobel; Mercedes Costell; Seiichiro Takahashi; Reinhard Fässler; Yu Yamaguchi; David H. Gutmann; Richard O. Hynes; Holger Gerhardt
Fibronectin (FN) is a major component of the extracellular matrix and functions in cell adhesion, cell spreading and cell migration. In the retina, FN is transiently expressed and assembled on astrocytes (ACs), which guide sprouting tip cells and deposit a provisional matrix for sprouting angiogenesis. The precise function of FN in retinal angiogenesis is largely unknown. Using genetic tools, we show that astrocytes are the major source of cellular FN during angiogenesis in the mouse retina. Deletion of astrocytic FN reduces radial endothelial migration during vascular plexus formation in a gene dose-dependent manner. This effect correlates with reduced VEGF receptor 2 and PI3K/AKT signalling, and can be mimicked by selectively inhibiting VEGF-A binding to FN through intraocular injection of blocking peptides. By contrast, AC-specific replacement of the integrin-binding RGD sequence with FN-RGE or endothelial deletion of itga5 shows little effect on migration and PI3K/AKT signalling, but impairs filopodial alignment along AC processes, suggesting that FN-integrin α5β1 interaction is involved in filopodial adhesion to the astrocytic matrix. AC FN shares its VEGF-binding function and cell-surface distribution with heparan-sulfate (HS), and genetic deletion of both FN and HS together greatly enhances the migration defect, indicating a synergistic function of FN and HS in VEGF binding. We propose that in vivo the VEGF-binding properties of FN and HS promote directional tip cell migration, whereas FN integrin-binding functions to support filopodia adhesion to the astrocytic migration template.
Cell Reports | 2015
Lukas Stanczuk; Ines Martinez-Corral; Maria H. Ulvmar; Yang Zhang; Barbbara Lavina; Marcus Fruttiger; Ralf H. Adams; Dieter Saur; Christer Betsholtz; Sagrario Ortega; Kari Alitalo; Mariona Graupera; Taija Mäkinen
Pathological lymphatic diseases mostly affect vessels in specific tissues, yet little is known about organ-specific regulation of the lymphatic vasculature. Here, we show that the vascular endothelial growth factor receptor 3 (VEGFR-3)/p110α PI3-kinase signaling pathway is selectively required for the formation of mesenteric lymphatic vasculature. Using genetic lineage tracing, we demonstrate that part of the mesenteric lymphatic vasculature develops from cKit lineage cells of hemogenic endothelial origin through a process we define as lymphvasculogenesis. This is contrary to the current dogma that all mammalian lymphatic vessels form by sprouting from veins. Our results reveal vascular-bed-specific differences in the origin and mechanisms of vessel formation, which may critically underlie organ-specific manifestation of lymphatic dysfunction in disease. The progenitor cells identified in this study may be exploited to restore lymphatic function following cancer surgery, lymphedema, or tissue trauma.
Nature Cell Biology | 2016
Verónica Torrano; Lorea Valcarcel-Jimenez; Ana R. Cortazar; Xiaojing Liu; Jelena Urosevic; Mireia Castillo-Martin; Sonia Fernández-Ruiz; Giampaolo Morciano; Alfredo Caro-Maldonado; Marc Guiu; Patricia Zúñiga-García; Mariona Graupera; Anna Bellmunt; Pahini Pandya; Mar Lorente; Natalia Martín-Martín; James D. Sutherland; Pilar Sánchez-Mosquera; Laura Bozal-Basterra; Amaia Arruabarrena-Aristorena; Antonio Berenguer; Nieves Embade; Aitziber Ugalde-Olano; Isabel Lacasa-Viscasillas; Ana Loizaga-Iriarte; Miguel Unda-Urzaiz; Nikolaus Schultz; Ana M. Aransay; Victoria Sanz-Moreno; Rosa Barrio
Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator 1α (PGC1α) suppresses prostate cancer progression and metastasis. A metabolic co-regulator data mining analysis unveiled that PGC1α is downregulated in prostate cancer and associated with disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α activates an oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis suppression. Importantly, a signature based on the PGC1α–ERRα pathway exhibited prognostic potential in prostate cancer, thus uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment.
Experimental Cell Research | 2013
Mariona Graupera; Michael Potente
Phosphoinositide 3-kinases (PI3Ks) are an evolutionary conserved family of lipid kinases that control cell growth, metabolism and survival. By generating lipid second messengers that interact with specialized lipid-binding domains found in a wide spectrum of signaling molecules, PI3Ks instigate signaling through a network of downstream effector pathways. Genetic studies in zebrafish and mice revealed the critical importance of intact PI3K signaling in the endothelium and provided first insights into how individual PI3K isoforms are utilized to control vascular development and function. Here, we review the myriad roles of PI3Ks in the endothelium and the mechanisms through which they couple environmental signals with specific steps of angiogenic vessel growth.
International Journal of Cancer | 2013
Marta Vives; Mireia M. Ginestà; Kristina Gracova; Mariona Graupera; Oriol Casanovas; Gabriel Capellá; Teresa Serrano; Berta Laquente; Francesc Viñals
In this article, the effectiveness of a multi‐targeted chemo‐switch (C‐S) schedule that combines metronomic chemotherapy (MET) after treatment with the maximum tolerated dose (MTD) is reported. This schedule was tested with gemcitabine in two distinct human pancreatic adenocarcinoma orthotopic models and with cyclophosphamide in an orthotopic ovarian cancer model. In both models, the C‐S schedule had the most favourable effect, achieving at least 80% tumour growth inhibition without increased toxicity. Moreover, in the pancreatic cancer model, although peritoneal metastases were observed in control and MTD groups, no dissemination was observed in the MET and C‐S groups. C‐S treatment caused a decrease in angiogenesis, and its effect on tumour growth was similar to that produced by the MTD followed by anti‐angiogenic DC101 treatment. C‐S treatment combined an increase in thrombospondin‐1 expression with a decrease in the number of CD133+ cancer cells and triple‐positive CD133+/CD44+/CD24+ cancer stem cells (CSCs). These findings confirm that the C‐S schedule is a challenging clinical strategy with demonstrable inhibitory effects on tumour dissemination, angiogenesis and CSCs.
Science Translational Medicine | 2016
Sandra D. Castillo; Elena Tzouanacou; May Zaw-Thin; Inma M. Berenjeno; Victoria Parker; Iñigo Chivite; Maria Milà-Guasch; Wayne Pearce; Isabelle Solomon; Ana Angulo-Urarte; Ana M. Figueiredo; Robert E Dewhurst; Rachel Knox; Graeme R. Clark; Cheryl L. Scudamore; Adam Badar; Tammy L. Kalber; Julie Foster; Daniel J. Stuckey; Anna L. David; Wayne A. Phillips; Mark F. Lythgoe; Valerie Wilson; Robert K. Semple; Nj Sebire; V.A. Kinsler; Mariona Graupera; Bart Vanhaesebroeck
Mutant Pik3ca gives rise to venous malformations. PI3K-ing the best treatment Venous malformations are a type of congenital vascular anomalies composed of dilated blood vessels, which can cause a variety of complications such as pain, disfigurement, and bleeding. The available treatments for these malformations are invasive and not particularly effective. Now, Castel et al. and Castillo et al. have both identified mutations in the phosphatidylinositol 3-kinase (PI3K) pathway as a cause of venous malformations, studied these in numerous mouse models, and demonstrated that they can be effectively treated by inhibiting PI3K activity, paving the way for future clinical trials. Venous malformations (VMs) are painful and deforming vascular lesions composed of dilated vascular channels, which are present from birth. Mutations in the TEK gene, encoding the tyrosine kinase receptor TIE2, are found in about half of sporadic (nonfamilial) VMs, and the causes of the remaining cases are unknown. Sclerotherapy, widely accepted as first-line treatment, is not fully efficient, and targeted therapy for this disease remains underexplored. We have generated a mouse model that faithfully mirrors human VM through mosaic expression of Pik3caH1047R, a constitutively active mutant of the p110α isoform of phosphatidylinositol 3-kinase (PI3K), in the embryonic mesoderm. Endothelial expression of Pik3caH1047R resulted in endothelial cell (EC) hyperproliferation, reduction in pericyte coverage of blood vessels, and decreased expression of arteriovenous specification markers. PI3K pathway inhibition with rapamycin normalized EC hyperproliferation and pericyte coverage in postnatal retinas and stimulated VM regression in vivo. In line with the mouse data, we also report the presence of activating PIK3CA mutations in human VMs, mutually exclusive with TEK mutations. Our data demonstrate a causal relationship between activating Pik3ca mutations and the genesis of VMs, provide a genetic model that faithfully mirrors the normal etiology and development of this human disease, and establish the basis for the use of PI3K-targeted therapies in VMs.
Cell Reports | 2016
Gabriela Jiménez-Valerio; Mar Martínez-Lozano; Nicklas Bassani; August Vidal; María Ochoa-de-Olza; Cristina Suárez; Xavier García-del-Muro; Joan Carles; Francesc Viñals; Mariona Graupera; Stefano Indraccolo; Oriol Casanovas
Summary Antiangiogenic drugs are used clinically for treatment of renal cell carcinoma (RCC) as a standard first-line treatment. Nevertheless, these agents primarily serve to stabilize disease, and resistance eventually develops concomitant with progression. Here, we implicate metabolic symbiosis between tumor cells distal and proximal to remaining vessels as a mechanism of resistance to antiangiogenic therapies in patient-derived RCC orthoxenograft (PDX) models and in clinical samples. This metabolic patterning is regulated by the mTOR pathway, and its inhibition effectively blocks metabolic symbiosis in PDX models. Clinically, patients treated with antiangiogenics consistently present with histologic signatures of metabolic symbiosis that are exacerbated in resistant tumors. Furthermore, the mTOR pathway is also associated in clinical samples, and its inhibition eliminates symbiotic patterning in patient samples. Overall, these data support a mechanism of resistance to antiangiogenics involving metabolic compartmentalization of tumor cells that can be inhibited by mTOR-targeted drugs.
Cancer Discovery | 2016
Klaus Okkenhaug; Mariona Graupera; Bart Vanhaesebroeck
The PI3K pathway is hyperactivated in most cancers, yet the capacity of PI3K inhibitors to induce tumor cell death is limited. The efficacy of PI3K inhibition can also derive from interference with the cancer cells ability to respond to stromal signals, as illustrated by the approved PI3Kδ inhibitor idelalisib in B-cell malignancies. Inhibition of the leukocyte-enriched PI3Kδ or PI3Kγ may unleash antitumor T-cell responses by inhibiting regulatory T cells and immune-suppressive myeloid cells. Moreover, tumor angiogenesis may be targeted by PI3K inhibitors to enhance cancer therapy. Future work should therefore also explore the effects of PI3K inhibitors on the tumor stroma, in addition to their cancer cell-intrinsic impact.nnnSIGNIFICANCEnThe PI3K pathway extends beyond the direct regulation of cancer cell proliferation and survival. In B-cell malignancies, targeting PI3K purges the tumor cells from their protective microenvironment. Moreover, we propose that PI3K isoform-selective inhibitors may be exploited in the context of cancer immunotherapy and by targeting angiogenesis to improve drug and immune cell delivery. Cancer Discov; 6(10); 1090-105. ©2016 AACR.