Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariona Terradas is active.

Publication


Featured researches published by Mariona Terradas.


Mutation Research-reviews in Mutation Research | 2010

Genetic activities in micronuclei: is the DNA entrapped in micronuclei lost for the cell?

Mariona Terradas; Marta Martín; Laura Tusell; Anna Genescà

Micronuclei are good markers of genotoxic exposure in humans and their scoring has been extensively used to identify potential genotoxic agents. Micronuclei are also indicators of chromosomal instability, since the frequency of micronuclei is higher in tumour cells and cells with a defective DNA damage repair system or disrupted cell cycle checkpoint machinery. Despite the widespread use of this biomarker, information on the basic biology of micronuclei and the impact of micronuclei on the cell is relatively controversial. In some cell systems, micronuclei are considered to be genetic material that is lost for the cell; whereas other studies suggest that micronuclear DNA is actively transcribed and its genes are fully expressed. Recently, evidence has accumulated suggesting that damaged DNA entrapped in micronuclei induces a defective cell cycle checkpoint arrest and DNA repair response, and that micronuclear content can be degraded without inducing an immediate cell cycle arrest or causing the cell to enter apoptosis. Overall, these findings emphasise the important consequences of micronucleus formation in terms of chromosomal instability in general and gene loss in particular.


DNA Repair | 2009

DNA lesions sequestered in micronuclei induce a local defective-damage response

Mariona Terradas; Marta Martín; Laura Tusell; Anna Genescà

Micronuclei are good markers of chromosome instability and, among other disturbances, are closely related to double-strand break induction. The ability of DNA lesions sequestered in the micronuclear bodies to activate the complex damage-signalling network is highly controversial since some repair factors have not been consistently detected inside micronuclei. In order to better understand the efficiency of the response induced by micronuclear DNA damage, we have analyzed the presence of DNA damage-response factors and DNA degradation markers in these structures. Radiation-induced DNA double-strand breaks produce a modification of chromatin structural proteins, such as the H2AX histone, which is rapidly phosphorylated around the break site. Strikingly, we have been able to distinguish two different phosphoH2AX (gammaH2AX) labelling patterns in micronuclei: discrete foci, indicating DSB presence, and uniform labelling affecting the whole micronucleus, pointing to genomic DNA fragmentation. At early post-irradiation times we observed a high fraction of micronuclei displaying gammaH2AX foci. Co-localization experiments showed that only a small fraction of the DSBs in micronuclei were able to properly recruit the p53 binding protein 1 (53BP1) and the meiotic recombination 11 (MRE11). We suggest that trafficking defects through the micronuclear envelope compromise the recruitment of DNA damage-response factors. In contrast to micronuclei displaying gammaH2AX foci, we observed that micronuclei showing a gammaH2AX extensive-uniform labelling were more frequently observed at substantial post-irradiation times. By means of TUNEL assay, we proved that DNA degradation was carried out inside these micronuclei. Given this scenario, we propose that micronuclei carrying a non-repaired DSB are conduced to their elimination, thus favouring chromosome instability in terms of allele loss.


Mutation Research | 2012

Nuclear envelope defects impede a proper response to micronuclear DNA lesions

Mariona Terradas; Marta Martín; Laia Hernández; Laura Tusell; Anna Genescà

When damage is inflicted in nuclear DNA, cells activate a hierarchical plethora of proteins that constitute the DNA damage response machinery. In contrast to the cell nucleus, the ability of micronuclear DNA lesions to activate this complex network is controversial. In order to determine whether the DNA contained in micronuclei is protected by the cellular damage response system, we studied the recruitment of excision repair factors to photolesions inflicted in the DNA of radiation-induced micronuclei. To perform this analysis, primary human dermal fibroblasts were exposed to UV-C light to induce photolesions in nuclear and micronuclear DNA. By means of immunofluorescence techniques, we observed that most micronuclei were devoid of NER factors. We conclude that UV photoproducts in micronuclei are mostly unable to generate an effective DNA damage response. We observed that the micronuclear envelope structure is a determinant factor that influences the repair of the DNA lesions inside micronuclei. Therefore, our results allow us to conclude that photolesions in radiation-induced micronuclei are poorly processed because the repair factors are unable to reach the micronuclear chromatin when a micronucleus is formed or after a genotoxic insult.


Mutation Research-reviews in Mutation Research | 2012

ATM and DNA-PKcs make a complementary couple in DNA double strand break repair

Marta Martín; Mariona Terradas; Laura Tusell; Anna Genescà

The interplay between ATM and DNA-PKcs kinases during double strand breaks (DSBs) resolution is still a matter of debate. ATM and DNA-PKcs participate differently in the DNA damage response pathway (DDR), but important common aspects are indeed found: both of them are activated when faced with DSBs, they share common targets in the DDR and the absence of either kinase results in faulty DSB repair. Absence of ATM translates into timely repair that, nevertheless, is incomplete. On the other hand, DNA-PKcs absence translates into slower repair, which in turn gives rise to the accumulation of simple and complex reorganizations. These outcomes confirm that the function of both protein kinases is essential to guarantee genome integrity. Interestingly, V(D)J and CSR recombination events provide a powerful tool to study the interplay between both kinases in DSB repair. Although the physiological DSBs generated during V(D)J and CSR recombination are resolved by the non-homologous end-joining (NHEJ) repair pathway, ATM absence during these events translates into chromosome translocations. These results suggest that NHEJ accuracy is threatened in the absence of ATM, which may play a role in avoiding illegitimate repair by favouring the joining of the correct DNA ends. Indeed, simultaneous DNA-PKcs and ATM deficiency during V(D)J and CSR recombination translates into a synergistic increase in potentially dangerous chromosomal translocations and deletions. Although the exact nature of their interaction remains elusive, the evidence indicates that ATM and DNA-PKcs play complementary roles that allow complete and legitimate DSB repair to be reached. Faithful repair can only be achieved by the presence and correct functioning of both kinases: while DNA-PKcs ensures fast rejoining, ATM guarantees complete repair.


International Journal of Molecular Sciences | 2013

Highly Sensitive Automated Method for DNA Damage Assessment: Gamma-H2AX Foci Counting and Cell Cycle Sorting

Laia Hernández; Mariona Terradas; Marta Martín; Laura Tusell; Anna Genescà

Phosphorylation of the H2AX protein is an early step in the double strand break (DSB) repair pathway; therefore, phosphorylated histone (γH2AX) foci scoring is widely used as a measure for DSBs. Foci scoring is performed either manually or semi-automatically using hand-operated capturing and image analysis software. In general, both techniques are laborious and prone to artifacts associated with manual scoring. While a few fully automated methods have been described in the literature, none of them have been used to quantify γH2AX foci in combination with a cell cycle phase analysis. Adding this feature to a rapid automated γH2AX foci quantification method would reduce the scoring uncertainty that arises from the variations in the background level of the γH2AX signal throughout the cell cycle. The method was set up to measure DNA damage induced in human mammary epithelial cells by irradiation under a mammogram device. We adapted a FISH (fluorescent in situ hybridization) Spot-counting system, which has a slide loader with automatic scanning and cell capture system throughout the thickness of each cell (z-stack), to meet our assay requirements. While scanning the sample, the system classifies the selected nuclei according to the signal patterns previously described by the user. For our purposes, a double staining immunofluorescence was carried out with antibodies to detect γH2AX and pericentrin, an integral component of the centrosome. We could thus distinguish both the number of γH2AX foci per cell and the cell cycle phase. Furthermore, restrictive settings of the program classifier reduced the “touching nuclei” problem described in other image analysis software. The automated scoring was faster than and as sensitive as its manually performed counterpart. This system is a reliable tool for γH2AX radio-induced foci counting and provides essential information about the cell cycle stage. It thus offers a more complete and rapid assessment of DNA damage.


Archives of Toxicology | 2016

Impaired nuclear functions in micronuclei results in genome instability and chromothripsis

Mariona Terradas; Marta Martín; Anna Genescà

Micronuclei (MN) have generally been considered a consequence of DNA damage and, as such, have been used as markers of exposure to genotoxic agents. However, advances in DNA sequencing methods and the development of high-resolution microscopy with which to analyse chromosome dynamics in live cells have been fundamental in building a more refined view of the existing links between DNA damage and micronuclei. Here, we review recent progress indicating that defects of micronuclei affect basic nuclear functions, such as DNA repair and replication, generating massive damage in the chromatin of the MN. In addition, the physical isolation of chromosomes within MN offers an attractive mechanistic explanation for chromothripsis, a massive local DNA fragmentation that produces complex rearrangements restricted to only one or a few chromosomes. When micronuclear chromatin is reincorporated in the daughter cell nuclei, the under-replicated, damaged or rearranged micronuclear chromatin might contribute to genome instability. The traditional conception of micronuclei has been overturned, as they have evolved from passive indicators of DNA damage to active players in the formation of DNA lesions, thus unravelling previously unforeseen roles of micronuclei in the origins of chromosome instability.


Aging Cell | 2015

Aging and radiation: bad companions

Laia Hernández; Mariona Terradas; Jordi Camps; Marta Martín; Laura Tusell; Anna Genescà

Aging involves a deterioration of cell functions and changes that may predispose the cell to undergo an oncogenic transformation. The carcinogenic risks following radiation exposure rise with age among adults. Increasing inflammatory response, loss of oxidant/antioxidant equilibrium, ongoing telomere attrition, decline in the DNA damage response efficiency, and deleterious nuclear organization are age‐related cellular changes that trigger a serious threat to genomic integrity. In this review, we discuss the mechanistic interplay between all these factors, providing an integrated view of how they contribute to the observed age‐related increase in radiation sensitivity. As life expectancy increases and so it does the medical intervention, it is important to highlight the benefits of radiation protection in the elderly. Thus, a deep understanding of the mechanistic processes confining the threat of aging‐related radiosensitivity is currently of foremost relevance.


Cell Cycle | 2014

γH2AX foci on apparently intact mitotic chromosomes: Not signatures of misrejoining events but signals of unresolved DNA damage

Marta Martín; Mariona Terradas; Laia Hernández; Anna Genescà

The presence of γH2AX foci on apparently intact mitotic chromosomes is controversial because they challenge the assumed relationship between γH2AX foci and DNA double-strand breaks (DSBs). In this work, we show that after irradiation during interphase, a variety of γH2AX foci are scored in mitotic cells. Surprisingly, approximately 80% of the γH2AX foci spread over apparently undamaged chromatin at Terminal or Interstitial positions and they can display variable sizes, thus being classified as Small, Medium and Big foci. Chromosome and chromatid breaks that reach mitosis are spotted with Big (60%) and Medium (30%) Terminal γH2AX foci, but very rarely are they signaled with Small γH2AX foci. To evaluate if Interstitial γH2AX foci might be signatures of misrejoining, an mFISH analysis was performed on the same slides. The results show that Interstitial γH2AX foci lying on apparently intact chromatin do not mark sites of misrejoining, and that misrejoined events were never signaled by a γH2AX foci during mitosis. Finally, when analyzing the presence of other DNA-damage response (DDR) factors we found that all γH2AX foci—regardless their coincidence with a visible break—always colocalized with MRE11, but not with 53BP1. This pattern suggests that these γH2AX foci may be hallmarks of both microscopically visible and invisible DNA damage, in which an active, although incomplete or halted DDR is taking place.


PLOS ONE | 2013

Increased mammogram-induced DNA damage in mammary epithelial cells aged in vitro.

Laia Hernández; Mariona Terradas; Marta Martín; Purificación Feijoo; David Soler; Laura Tusell; Anna Genescà

Concerned about the risks of mammography screening in the adult population, we analyzed the ability of human mammary epithelial cells to cope with mammogram-induced DNA damage. Our study shows that an X-ray dose of 20 mGy, which is the standard dose received by the breast surface per two-view mammogram X-ray exploration, induces increased frequencies of DNA double-strand breaks to in vitro aged–but not to young–human mammary epithelial cells. We provide evidence that aged epithelial breast cells are more radiosensitive than younger ones. Our studies point to an inefficient damage response of aged cells to low-dose radiation, this being due to both delayed and incomplete mobilization of repair proteins to DNA strand breaks. This inefficient damage response is translated into an important delay in double-strand break disappearance and consequent accumulation of unrepaired DNA breaks. The result of this is a significant increase in micronuclei frequency in the in vitro aged mammary epithelial cells exposed to doses equivalent to a single mammogram X-ray exploration. Since our experiments were carried out in primary epithelial cell cultures in which cells age at the same time as they undergo replication-dependent telomere shortening, we needed to determine the contribution of these two factors to their phenotype. In this paper, we report that the exogenous expression of human telomerase retrotranscriptase in late population doubling epithelial cells does not rescue its delayed repair phenotype. Therefore, retarded DNA break repair is a direct consequence of cellular aging itself, rather than a consequence of the presence of dysfunctional telomeres. Our findings of long-lasting double strand breaks and incomplete DNA break repair in the in vitro aged epithelial cells are in line with the increased carcinogenic risks of radiation exposures at older ages revealed by epidemiologic studies.


Breast Cancer Research | 2016

Breast primary epithelial cells that escape p16-dependent stasis enter a telomere- driven crisis state

Purificación Feijoo; Mariona Terradas; David Soler; Daniel Domínguez; Laura Tusell; Anna Genescà

Breast cancer is the most common malignant disease in women, but some basic questions remain in breast cancer biology. To answer these, several cell models were developed. Recently, the use of improved cell-culture conditions has enabled the development of a new primary cell model with certain luminal characteristics. This model is relevant because, after the introduction of a specific set of genetic elements, the transformed cells yielded tumors resembling human adenocarcinomas in mice. The use of improved cell-culture conditions supporting the growth of these breast primary epithelial cells was expected to delay or eliminate stress-induced senescence and lead to the propagation of normal cells. However, no studies have been carried out to investigate these points. Propagation of breast primary epithelial cells was performed in WIT medium on Primaria plates. Immunofluorescence, western blot and qRT-PCR were used to detect molecular markers, and to determine the integrity of DNA damage-response pathways. Promoter methylation of p16INK4a was assessed by pyrosequencing. In order to obtain a dynamic picture of chromosome instability over time in culture, we applied FISH methodologies. To better link chromosome instability with excessive telomere attrition, we introduced the telomerase reverse transcriptase human gene using a lentiviral vector. We report here that breast primary epithelial cells propagated in vitro with WIT medium on Primaria plates express some luminal characteristics, but not a complete luminal lineage phenotype. They undergo a p16-dependent stress-induced senescence (stasis), and the cells that escape stasis finally enter a crisis state with rampant chromosome instability. Chromosome instability in these cells is driven by excessive telomere attrition, as distributions of chromosomes involved in aberrations correlate with the profiles of telomere signal-free ends. Importantly, ectopic expression of the human TERT gene rescued their chromosomal instability phenotype. Essentially, our data show that contrary to what was previously suggested, improved culture conditions to propagate in vitro mammary epithelial cells with some luminal characteristics do not prevent stress-induced senescence. This barrier is overcome by spontaneous methylation of the p16INK4a promoter, allowing the proliferation of cells with telomere dysfunction and ensuing chromosome instability.

Collaboration


Dive into the Mariona Terradas's collaboration.

Top Co-Authors

Avatar

Anna Genescà

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Marta Martín

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Laura Tusell

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Laia Hernández

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

David Soler

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Purificación Feijoo

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Daniel Domínguez

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Teresa Anglada

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

George Iliakis

University of Duisburg-Essen

View shared research outputs
Researchain Logo
Decentralizing Knowledge