Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marirosa Mora is active.

Publication


Featured researches published by Marirosa Mora.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae

Hervé Tettelin; Vega Masignani; Michael J. Cieslewicz; Jonathan A. Eisen; Scott N. Peterson; Michael R. Wessels; Ian T. Paulsen; Karen E. Nelson; Immaculada Margarit; Timothy D. Read; Lawrence C. Madoff; Alex M. Wolf; Maureen J. Beanan; Lauren M. Brinkac; Sean C. Daugherty; Robert T. DeBoy; A. Scott Durkin; James F. Kolonay; Ramana Madupu; Matthew Lewis; Diana Radune; Nadezhda B. Fedorova; David Scanlan; Hoda Khouri; Stephanie Mulligan; Heather A. Carty; Robin T. Cline; Susan Van Aken; John Gill; Maria Scarselli

The 2,160,267 bp genome sequence of Streptococcus agalactiae, the leading cause of bacterial sepsis, pneumonia, and meningitis in neonates in the U.S. and Europe, is predicted to encode 2,175 genes. Genome comparisons among S. agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and the other completely sequenced genomes identified genes specific to the streptococci and to S. agalactiae. These in silico analyses, combined with comparative genome hybridization experiments between the sequenced serotype V strain 2603 V/R and 19 S. agalactiae strains from several serotypes using whole-genome microarrays, revealed the genetic heterogeneity among S. agalactiae strains, even of the same serotype, and provided insights into the evolution of virulence mechanisms.


Nature Biotechnology | 2006

Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome

Manuel J Rodríguez-Ortega; Nathalie Norais; Giuliano Bensi; Sabrina Liberatori; Sabrina Capo; Marirosa Mora; Maria Scarselli; Francesco Doro; Germano Ferrari; Ignazio Garaguso; Tiziana Maggi; Anita Neumann; Alessia Covre; John L. Telford; Guido Grandi

We describe a proteomic approach for identifying bacterial surface-exposed proteins quickly and reliably for their use as vaccine candidates. Whole cells are treated with proteases to selectively digest protruding proteins that are subsequently identified by mass spectrometry analysis of the released peptides. When applied to the sequenced M1_SF370 group A Streptococcus strain, 68 PSORT-predicted surface-associated proteins were identified, including most of the protective antigens described in the literature. The number of surface-exposed proteins varied from strain to strain, most likely as a consequence of different capsule content. The surface-exposed proteins of the highly virulent M23_DSM2071 strain included 17 proteins, 15 in common with M1_SF370. When 14 of the 17 proteins were expressed in E. coli and tested in the mouse for their capacity to confer protection against a lethal dose of M23_DSM2071, one new protective antigen (Spy0416) was identified. This strategy overcomes the difficulties so far encountered in surface protein characterization and has great potential in vaccine discovery.


Journal of Experimental Medicine | 2002

NadA, a Novel Vaccine Candidate of Neisseria meningitidis

Maurizio Comanducci; Stefania Bambini; Brunella Brunelli; Jeannette Adu-Bobie; Beatrice Aricò; Barbara Capecchi; Marzia Monica Giuliani; Vega Masignani; Laura Santini; Silvana Savino; Dan M. Granoff; Dominique A. Caugant; Mariagrazia Pizza; Rino Rappuoli; Marirosa Mora

Neisseria meningitidis is a human pathogen, which, in spite of antibiotic therapy, is still a major cause of mortality due to sepsis and meningitis. Here we describe NadA, a novel surface antigen of N. meningitidis that is present in 52 out of 53 strains of hypervirulent lineages electrophoretic types (ET) ET37, ET5, and cluster A4. The gene is absent in the hypervirulent lineage III, in N. gonorrhoeae and in the commensal species N. lactamica and N. cinerea. The guanine/cytosine content, lower than the chromosome, suggests acquisition by horizontal gene transfer and subsequent limited evolution to generate three well-conserved alleles. NadA has a predicted molecular structure strikingly similar to a novel class of adhesins (YadA and UspA2), forms high molecular weight oligomers, and binds to epithelial cells in vitro supporting the hypothesis that NadA is important for host cell interaction. NadA induces strong bactericidal antibodies and is protective in the infant rat model suggesting that this protein may represent a novel antigen for a vaccine able to control meningococcal disease caused by three hypervirulent lineages.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens

Marirosa Mora; Giuliano Bensi; Sabrina Capo; Fabiana Falugi; Chiara Zingaretti; Andrea G. O. Manetti; Tiziana Maggi; Anna Rita Taddei; Guido Grandi; John L. Telford

Although pili have long been recognized in Gram-negative pathogens as important virulence factors involved in adhesion and invasion, very little is known about extended surface organelles in Gram-positive pathogens. Here we report that Group A Streptococcus (GAS), a Gram-positive human-specific pathogen that causes pharyngitis, impetigo, invasive disease, necrotizing fasciitis, and autoimmune sequelae has long, surface-exposed, pilus-like structures composed of members of a family of extracellular matrix-binding proteins. We describe four variant pili and show that each is recognized by a specific serum of the Lancefield T-typing system, which has been used for over five decades to characterize GAS isolates. Furthermore, we show that immunization of mice with a combination of recombinant pilus proteins confers protection against mucosal challenge with virulent GAS bacteria. The data indicate that induction of a protective immune response against these structures may be a useful strategy for development of a vaccine against disease caused by GAS infection.


Molecular Microbiology | 2006

Identification of novel genomic islands coding for antigenic pilus‐like structures in Streptococcus agalactiae

Roberto Rosini; Cira Daniela Rinaudo; Marco Soriani; Peter Lauer; Marirosa Mora; Domenico Maione; Annarita Taddei; Isabella Santi; Claudia Ghezzo; Cecilia Brettoni; Scilla Buccato; Immaculada Margarit; Guido Grandi; John L. Telford

We have recently reported the presence of covalently linked pilus‐like structures in the human pathogen, Group B Streptococcus (GBS). The pilus operon codes for three proteins which contain the conserved amino acid motif, LPXTG, associated with cell wall‐anchored proteins together with two genes coding for sortase enzymes. Analysis of the eight sequenced genomes of GBS has led to the identification of a second, related genomic island of which there are two variants, each containing genes coding for proteins with LPXTG motifs and sortases. Here we show that both variant islands also code for pilus‐like structures. Furthermore, we provide a thorough description and characterization of the genomic organization of the islands and the role of each protein in the assembly of the pili. For each pilus, polymerization of one of the three component proteins is essential for incorporation of the other two proteins into the pilus structure. In addition, two sortases are required for complete pilus assembly, each with specificity for one of the pilus components. A component protein of one of the newly identified pili is also a previously identified protective antigen and a second component of this pilus is shown to confer protection against GBS challenge. We propose that pilus‐like structures are important virulence factors and potential vaccine candidates.


The Journal of Infectious Diseases | 2009

Preventing Bacterial Infections with Pilus-Based Vaccines: the Group B Streptococcus Paradigm

Immaculada Margarit; Cira Daniela Rinaudo; Cesira Galeotti; Domenico Maione; Claudia Ghezzo; Elena Buttazzoni; Roberto Rosini; Ylenia Runci; Marirosa Mora; Scilla Buccato; Massimiliano Pagani; Eleonora Tresoldi; Alberto Berardi; Roberta Creti; Carol J. Baker; John L. Telford; Guido Grandi

We recently described the presence of 3 pilus variants in the human pathogen group B streptococcus (GBS; also known as Streptococcus agalactiae), each encoded by a distinct pathogenicity island, as well as the ability of pilus components to elicit protection in mice against homologous challenge. To determine whether a vaccine containing a combination of proteins from the 3 pilus types could provide broad protection, we analyzed pili distribution and conservation in 289 clinical isolates. We found that pilus sequences in each island are conserved, all strains carried at least 1 of the 3 islands, and a combination of the 3 pilus components conferred protection against all tested GBS challenge strains. These data are the first to indicate that a vaccine exclusively constituted by pilus components can be effective in preventing infections caused by GBS, and they pave the way for the use of a similar approach against other pathogenic streptococci.


Molecular Microbiology | 2007

Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation

Andrea G. O. Manetti; Chiara Zingaretti; Fabiana Falugi; Sabrina Capo; Mauro Bombaci; Fabio Bagnoli; Gabriella Gambellini; Giuliano Bensi; Marirosa Mora; Andrew M. Edwards; James M. Musser; Edward A. Graviss; John L. Telford; Guido Grandi; Immaculada Margarit

Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram‐positive human pathogen responsible for several acute diseases and autoimmune sequelae that account for half a million deaths worldwide every year. GAS infections require the capacity of the pathogen to adhere to host tissues and assemble in cell aggregates. Furthermore, a role for biofilms in GAS pathogenesis has recently been proposed. Here we investigated the role of GAS pili in biofilm formation. We demonstrated that GAS pilus‐negative mutants, in which the genes encoding either the pilus backbone structural protein or the sortase C1 have been deleted, showed an impaired capacity to attach to a pharyngeal cell line. The same mutants were much less efficient in forming cellular aggregates in liquid culture and microcolonies on human cells. Furthermore, mutant strains were incapable of producing the typical three‐dimensional layer with bacterial microcolonies embedded in a carbohydrate polymeric matrix. Complemented mutants had an adhesion and aggregation phenotype similar to the wild‐type strain. Finally, in vivo expression of pili was indirectly confirmed by demonstrating that most of the sera from human patients affected by GAS‐mediated pharyngitis recognized recombinant pili proteins. These data support the role of pili in GAS adherence and colonization and suggest a general role of pili in all pathogenic streptococci.


Infection and Immunity | 2004

NadA Diversity and Carriage in Neisseria meningitidis

Maurizio Comanducci; Stefania Bambini; Dominique A. Caugant; Marirosa Mora; Brunella Brunelli; Barbara Capecchi; Laura Ciucchi; Rino Rappuoli; Mariagrazia Pizza

ABSTRACT NadA is a novel vaccine candidate recently identified in Neisseria meningitidis and involved in adhesion to host tissues. The nadA gene has been found in approximately 50% of the strains isolated from patients and in three of the four hypervirulent lineages of non-serogroup A strains. Here we investigated the presence of the nadA gene in 154 meningococcal strains isolated from healthy people (carrier strains). Only 25 (16.2%) of the 154 carrier isolates harbored the nadA gene. The commensal species Neisseria lactamica was also found not to have the nadA gene. Eighteen of the carrier strains belonged to the ET-5 and ET-37 hypervirulent clusters, indicating that only the 5.1% of the genuine carrier population actually harbored nadA (7 of 136 strains). Five of the seven strains harbored a novel allele of the nadA gene that was designated nadA4. The NadA4 protein was present on the bacterial surface as heat-stable high-molecular-weight oligomers. Antibodies against the recombinant NadA4 protein were bactericidal against homologous strains, whereas the activity against other NadA alleles was weak. In conclusion, the nadA gene segregates differently in the population of strains isolated from healthy individuals and in the population of strains isolated from patients. The presence of NadA can therefore be used as a tool to study the dynamics of meningococcal infections and understand why this bacterium, which is mostly a commensal, can become a severe pathogen.


The Journal of Infectious Diseases | 2008

Sequence Variation in Group A Streptococcus Pili and Association of Pilus Backbone Types with Lancefield T Serotypes

Fabiana Falugi; Chiara Zingaretti; Vittoria Pinto; Massimo Mariani; Laura Amodeo; Andrea G. O. Manetti; Sabrina Capo; James M. Musser; Graziella Orefici; Immaculada Margarit; John L. Telford; Guido Grandi; Marirosa Mora

BACKGROUND We previously reported that group A Streptococcus (GAS) pili are the T antigens described by Rebecca Lancefield. We also showed that these pili, constituted by backbone, ancillary 1, and ancillary 2 proteins, confer protection against GAS challenge in a mouse model. METHODS We evaluated pilus distribution and conservation by sequencing the subunits of 39 new GAS isolates and used immunoblot analysis and agglutination assays to define the specificity of T sera to pilus subunits. RESULTS GAS pili are encoded by 9 different islands within which backbone protein, ancillary protein 1, and ancillary protein 2 cluster in 15, 16, and 5 variants, respectively. Immunoblot and agglutination assays revealed that T type is determined by the backbone variant. This observation enabled us to set up a simple polymerase chain reaction assay to define the T type of GAS isolates. CONCLUSIONS We propose the use of a tee gene sequence typing, analogous to the emm gene typing, as a valuable molecular tool that could substitute for the serological T classification of GAS strains. From our sequence analysis and from recent epidemiological data, we estimate that a vaccine comprising a combination of 12 backbone variants would protect against > 90% of currently circulating strains.


Molecular & Cellular Proteomics | 2009

Surfome Analysis as a Fast Track to Vaccine Discovery IDENTIFICATION OF A NOVEL PROTECTIVE ANTIGEN FOR GROUP B STREPTOCOCCUS HYPERVIRULENT STRAIN COH1

Francesco Doro; Sabrina Liberatori; Manuel J. Rodríguez-Ortega; Cira Daniela Rinaudo; Roberto Rosini; Marirosa Mora; Maria Scarselli; Emrah Altindis; Romina D'aurizio; Maria Stella; Immaculada Margarit; Domenico Maione; John L. Telford; Nathalie Norais; Guido Grandi

Safe recombinant vaccines, based on a small number of antigenic proteins, are emerging as the most attractive, cost-effective solution against infectious diseases. In the present work, we confirmed previous data from our laboratory showing that whole viable bacterial cell treatment with proteases followed by the identification of released peptides by mass spectrometry is the method of choice for the rapid and reliable identification of vaccine candidates in Gram-positive bacteria. When applied to the Group B Streptococcus COH1 strain, 43 surface-associated proteins were identified, including all the protective antigens described in the literature as well as a new protective antigen, the cell wall-anchored protein SAN_1485 belonging to the serine-rich repeat protein family. This strategy overcomes the difficulties so far encountered in the identification of novel vaccine candidates and speeds up the entire vaccine discovery process by reducing the number of recombinant proteins to be tested in the animal model.

Collaboration


Dive into the Marirosa Mora's collaboration.

Researchain Logo
Decentralizing Knowledge