Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maris Kuningas is active.

Publication


Featured researches published by Maris Kuningas.


Neuropsychopharmacology | 2007

Mental performance in old age dependent on Cortisol and genetic variance in the mineralocorticoid and glucocorticoid receptors

Maris Kuningas; Roel de Rijk; Rudi G. J. Westendorp; Jelle Jolles; P. Eline Slagboom; Diana van Heemst

Depression and cognitive decline have been associated with changes in circulating cortisol concentrations. Cortisol exerts its functions through mineralocorticoid (MR) and glucocorticoid (GR) receptors. However, data on the influence of variations in the MR and GR genes on depressive symptoms and cognitive functioning in older adults are scarce. Therefore, we explored the impact of MR-215G/C, MR-I180V, GR-ER22/23EK, GR-N363S, and GR-BclI polymorphisms on these end points in the population-based Leiden 85-plus Study. This prospective study includes 563 participants aged 85 years and older, with a mean follow-up of 4.2 years. In this study, high morning cortisol levels (per 1 SD cortisol) associated with impairments in global cognitive functioning (p=0.002) at baseline (age 85). These impairments were mainly attributable to lower attention (p=0.057) and slower processing speed (p=0.014). Similar effects were also observed during follow-up (age 85–90), where participants with higher cortisol levels (per 1 SD cortisol) had impaired global cognitive functioning (p=0.003), as well as impairments in attention (p=0.034) and processing speed (p=0.013). Changes in depressive symptoms were observed for the MR-I180V single-nucleotide polymorphism (SNP), where during follow-up the prevalence of depressive symptoms was higher in the 180V-allele carriers (p=0.049) compared to noncarriers. Dependent on these polymorphisms, no differences in overall and in specific domains of cognitive functioning were observed. In conclusion, the MR-I180V SNP has a specific effect on depressive symptoms, independent from cognitive functioning, and other polymorphisms in the MR and GR genes. In contrast, these genetic variants in the MR and GR genes do not influence cognitive functioning in old age.


Biological Psychiatry | 2013

A Genome-Wide Association Study of Depressive Symptoms

Karin Hek; Ayse Demirkan; Jari Lahti; Antonio Terracciano; Alexander Teumer; Marilyn C. Cornelis; Najaf Amin; Erin Bakshis; Jens Baumert; Jingzhong Ding; Yongmei Liu; Kristin D. Marciante; Osorio Meirelles; Michael A. Nalls; Yan V. Sun; Nicole Vogelzangs; Lei Yu; Stefania Bandinelli; Emelia J. Benjamin; David A. Bennett; Dorret I. Boomsma; Alessandra Cannas; Laura H. Coker; Eco J. C. de Geus; Philip L. De Jager; Ana V. Diez-Roux; Shaun Purcell; Frank B. Hu; Eric B. Rimm; David J. Hunter

BACKGROUND Depression is a heritable trait that exists on a continuum of varying severity and duration. Yet, the search for genetic variants associated with depression has had few successes. We exploit the entire continuum of depression to find common variants for depressive symptoms. METHODS In this genome-wide association study, we combined the results of 17 population-based studies assessing depressive symptoms with the Center for Epidemiological Studies Depression Scale. Replication of the independent top hits (p<1×10(-5)) was performed in five studies assessing depressive symptoms with other instruments. In addition, we performed a combined meta-analysis of all 22 discovery and replication studies. RESULTS The discovery sample comprised 34,549 individuals (mean age of 66.5) and no loci reached genome-wide significance (lowest p = 1.05×10(-7)). Seven independent single nucleotide polymorphisms were considered for replication. In the replication set (n = 16,709), we found suggestive association of one single nucleotide polymorphism with depressive symptoms (rs161645, 5q21, p = 9.19×10(-3)). This 5q21 region reached genome-wide significance (p = 4.78×10(-8)) in the overall meta-analysis combining discovery and replication studies (n = 51,258). CONCLUSIONS The results suggest that only a large sample comprising more than 50,000 subjects may be sufficiently powered to detect genes for depressive symptoms.


Neurobiology of Aging | 2009

VDR gene variants associate with cognitive function and depressive symptoms in old age

Maris Kuningas; Simon P. Mooijaart; Jelle Jolles; P. Eline Slagboom; Rudi G. J. Westendorp; Diana van Heemst

Vitamin D has been recently implicated in brain function. Our objective was to test whether genetic variance in the vitamin D receptor (VDR) gene is associated with cognitive functioning and depressive symptoms in old age. The study was carried out in the prospective population-based Leiden 85-plus Study. All 563 participants of the study were genotyped for Cdx-2, FokI, BsmI, ApaI and TaqI polymorphisms in the VDR gene. Our data revealed an overall worse performance on tests measuring cognitive functioning for carriers of BsmI (p=0.013) and TaqI (p=0.004) polymorphisms, and of haplotype 2 (BAt) (p=0.004). In contrast, carriers of ApaI variant-allele and of haplotype 1 (baT) had better cognitive functioning together with less depressive symptoms. These associations could not be explained by differences in calcium levels, and by selective survival, since no associations between the VDR gene variants and calcium levels and mortality were observed. In conclusion, our results show that genetic variance in the VDR gene influences the susceptibility to age-related changes in cognitive functioning and in depressive symptoms.


European Journal of Human Genetics | 2007

Haplotypes in the human Foxo1a and Foxo3a genes; impact on disease and mortality at old age

Maris Kuningas; Reedik Mägi; Rudi G. J. Westendorp; P. Eline Slagboom; Maido Remm; Diana van Heemst

Recently, the Daf-16 gene has been shown to regulate the lifespan of nematodes and flies. In mammals, the Daf-16 homologues are forkhead (FOXO) transcription factors, of which specific functions have been identified for Foxo1a and Foxo3a. Despite that, their influence on human age-related trajectories and lifespan is unknown. Here, we analysed the effect of genetic variance in Foxo1a and Foxo3a on metabolic profile, age-related diseases, fertility, fecundity and mortality. This study was carried out in the prospective population-based Leiden 85-plus Study, which includes 1245 participants, aged 85 years or more. The mean follow-up time was 4.4 years. Haplotype analyses of Foxo1a revealed that carriers of haplotype 3 ‘TCA’ have higher HbA1c levels (P=0.025) and a 1.14-fold higher all-cause mortality risk (P=0.021). This increase in mortality was attributable to death from diabetes, for which a 2.43-fold increase was observed (P=0.025). The analyses with Foxo3a haplotypes revealed no differences in metabolic profile, fertility or fecundity. However, increased risks of stroke were observed for Foxo3a block-A haplotype 2 ‘GAGC’ (P=0.007) and haplotype 4 ‘AAAT’ (P=0.014) carriers. In addition, the haplotype 2 ’GAGC’ carriers had a 1.13-fold increased risk for all-cause mortality (P=0.036) and 1.19-fold increased risk for cardiovascular mortality (P=0.052). In conclusion, this study shows that genetic variation in evolutionarily conserved Foxo1a and Foxo3a genes influences lifespan in our study population.


Neurobiology of Aging | 2011

A genome-wide association study of aging

Stefan Walter; Gil Atzmon; Ellen W. Demerath; Melissa Garcia; Robert C. Kaplan; Meena Kumari; Kathryn L. Lunetta; Yuri Milaneschi; Toshiko Tanaka; Gregory J. Tranah; Uwe Völker; Lei Yu; Alice M. Arnold; Emelia J. Benjamin; Reiner Biffar; Aron S. Buchman; Eric Boerwinkle; David Couper; Philip L. De Jager; Denis A. Evans; Tamara B. Harris; Wolfgang Hoffmann; Albert Hofman; David Karasik; Douglas P. Kiel; Thomas Kocher; Maris Kuningas; Lenore J. Launer; Kurt Lohman; Pamela L. Lutsey

Human longevity and healthy aging show moderate heritability (20%-50%). We conducted a meta-analysis of genome-wide association studies from 9 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for 2 outcomes: (1) all-cause mortality, and (2) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant predictor of either outcome (p < 5 × 10(-8)). We found 14 independent SNPs that predicted risk of death, and 8 SNPs that predicted event-free survival (p < 10(-5)). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1, NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases including cancer and Alzheimers disease. In addition to considerable overlap between the traits, pathway and network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an important factor in regulating aging free of major disease and achieving longevity.


Aging Cell | 2008

Genes encoding longevity: from model organisms to humans

Maris Kuningas; Simon P. Mooijaart; Diana van Heemst; Bas J. Zwaan; P. Eline Slagboom; Rudi G. J. Westendorp

Ample evidence from model organisms has indicated that subtle variation in genes can dramatically influence lifespan. The key genes and molecular pathways that have been identified so far encode for metabolism, maintenance and repair mechanisms that minimize age‐related accumulation of permanent damage. Here, we describe the evolutionary conserved genes that are involved in lifespan regulation of model organisms and humans, and explore the reasons of discrepancies that exist between the results found in the various species. In general, the accumulated data have revealed that when moving up the evolutionary ladder, together with an increase of genome complexity, the impact of candidate genes on lifespan becomes smaller. The presence of genetic networks makes it more likely to expect impact of variation in several interacting genes to affect lifespan in humans. Extrapolation of findings from experimental models to humans is further complicated as phenotypes are critically dependent on the setting in which genes are expressed, while laboratory conditions and modern environments are markedly dissimilar. Finally, currently used methodologies may have only little power and validity to reveal genetic variation in the population. In conclusion, although the study of model organisms has revealed potential candidate genetic mechanisms determining aging and lifespan, to what extent they explain variation in human populations is still uncertain.


Psychoneuroendocrinology | 2011

Genetics of cortisol secretion and depressive symptoms: A candidate gene and genome wide association approach

Fleur P. Velders; Maris Kuningas; Meena Kumari; Marieke C.J. Dekker; André G. Uitterlinden; Clemens Kirschbaum; Karin Hek; Albert Hofman; Frank C. Verhulst; Mika Kivimäki; Cornelia M. van Duijn; Brian R. Walker; Henning Tiemeier

BACKGROUND Depressive patients often have altered cortisol secretion, but few studies have investigated genetic variants in relation to both cortisol secretion and depression. To identify genes related to both these conditions, we: (1) tested the association of single nucleotide polymorphisms (SNPs) in hypothalamic-pituitary-adrenal-axis (HPA-axis) candidate genes with a summary measure of total cortisol secretion during the day (cortisol(AUC)), (2) performed a genome wide association study (GWAS) of cortisol(AUC), and (3) tested the association of identified cortisol-related SNPs with depressive symptoms. METHODS We analyzed data on candidate SNPs for the HPA-axis, genome-wide scans, cortisol secretion (n=1711) and depressive symptoms (the Centre for Epidemiology Studies Depression Scale, CES-D) (n=2928) in elderly persons of the Rotterdam Study. We used data from the Whitehall II study (n=2836) to replicate the GWAS findings. RESULTS Of the 1456 SNPs in 33 candidate genes, minor alleles of 4 SNPs (rs9470080, rs9394309, rs7748266 and rs1360780) in the FKBP5 gene were associated with a decreased cortisol(AUC) (p<1×10(-4) after correction for multiple testing using permutations). These SNPs were also associated with an increased risk of depressive symptoms (rs9470080: OR 1.19 (95%CI 1.0; 1.4)). The GWAS for cortisol yielded 2 SNPs with p-values of 1×10(-06) (rs8062512, rs2252459), but these associations could not be replicated. CONCLUSIONS These results suggest that variation in the FKBP5 gene is associated with both cortisol(AUC) and the likelihood of depressive symptoms.


PLOS Genetics | 2012

Evidence of Inbreeding Depression on Human Height

Ruth McQuillan; Niina Eklund; Nicola Pirastu; Maris Kuningas; Brian P. McEvoy; Tonu Esko; Tanguy Corre; Gail Davies; Marika Kaakinen; Leo-Pekka Lyytikäinen; Kati Kristiansson; Aki S. Havulinna; Martin Gögele; Veronique Vitart; Albert Tenesa; Yurii S. Aulchenko; Caroline Hayward; Åsa Johansson; Mladen Boban; Sheila Ulivi; Antonietta Robino; Vesna Boraska; Wilmar Igl; Sarah H. Wild; Lina Zgaga; Najaf Amin; Evropi Theodoratou; Ozren Polasek; Giorgia Girotto; Lorna M. Lopez

Stature is a classical and highly heritable complex trait, with 80%–90% of variation explained by genetic factors. In recent years, genome-wide association studies (GWAS) have successfully identified many common additive variants influencing human height; however, little attention has been given to the potential role of recessive genetic effects. Here, we investigated genome-wide recessive effects by an analysis of inbreeding depression on adult height in over 35,000 people from 21 different population samples. We found a highly significant inverse association between height and genome-wide homozygosity, equivalent to a height reduction of up to 3 cm in the offspring of first cousins compared with the offspring of unrelated individuals, an effect which remained after controlling for the effects of socio-economic status, an important confounder (χ2 = 83.89, df = 1; p = 5.2×10−20). There was, however, a high degree of heterogeneity among populations: whereas the direction of the effect was consistent across most population samples, the effect size differed significantly among populations. It is likely that this reflects true biological heterogeneity: whether or not an effect can be observed will depend on both the variance in homozygosity in the population and the chance inheritance of individual recessive genotypes. These results predict that multiple, rare, recessive variants influence human height. Although this exploratory work focuses on height alone, the methodology developed is generally applicable to heritable quantitative traits (QT), paving the way for an investigation into inbreeding effects, and therefore genetic architecture, on a range of QT of biomedical importance.


WOS | 2015

Adiposity as a cause of cardiovascular disease: a Mendelian randomization study

Sara Haegg; Tove Fall; Alexander Ploner; Reedik Maegi; Krista Fischer; Harmen H. M. Draisma; Mart Kals; Paul S. de Vries; Abbas Dehghan; Sara M. Willems; Antti-Pekka Sarin; Kati Kristiansson; Marja-Liisa Nuotio; Aki S. Havulinna; Renée F.A.G. de Bruijn; M. Arfan Ikram; Maris Kuningas; Bruno H. Stricker; Oscar H. Franco; Beben Benyamin; Christian Gieger; Alistair S. Hall; Ville Huikari; Antti Jula; Marjo-Riitta Järvelin; Marika Kaakinen; Jaakko Kaprio; Michael Kobl; Massimo Mangino; Christopher P. Nelson

BACKGROUND Adiposity, as indicated by body mass index (BMI), has been associated with risk of cardiovascular diseases in epidemiological studies. We aimed to investigate if these associations are causal, using Mendelian randomization (MR) methods. METHODS The associations of BMI with cardiovascular outcomes [coronary heart disease (CHD), heart failure and ischaemic stroke], and associations of a genetic score (32 BMI single nucleotide polymorphisms) with BMI and cardiovascular outcomes were examined in up to 22,193 individuals with 3062 incident cardiovascular events from nine prospective follow-up studies within the ENGAGE consortium. We used random-effects meta-analysis in an MR framework to provide causal estimates of the effect of adiposity on cardiovascular outcomes. RESULTS There was a strong association between BMI and incident CHD (HR = 1.20 per SD-increase of BMI, 95% CI, 1.12-1.28, P = 1.9.10(-7)), heart failure (HR = 1.47, 95% CI, 1.35-1.60, P = 9.10(-19)) and ischaemic stroke (HR = 1.15, 95% CI, 1.06-1.24, P = 0.0008) in observational analyses. The genetic score was robustly associated with BMI (β = 0.030 SD-increase of BMI per additional allele, 95% CI, 0.028-0.033, P = 3.10(-107)). Analyses indicated a causal effect of adiposity on development of heart failure (HR = 1.93 per SD-increase of BMI, 95% CI, 1.12-3.30, P = 0.017) and ischaemic stroke (HR = 1.83, 95% CI, 1.05-3.20, P = 0.034). Additional cross-sectional analyses using both ENGAGE and CARDIoGRAMplusC4D data showed a causal effect of adiposity on CHD. CONCLUSIONS Using MR methods, we provide support for the hypothesis that adiposity causes CHD, heart failure and, previously not demonstrated, ischaemic stroke.


PLOS ONE | 2009

Selection for Genetic Variation Inducing Pro- Inflammatory Responses under Adverse Environmental Conditions in a Ghanaian Population

Maris Kuningas; Linda May; Riin Tamm; David van Bodegom; Anita H. J. van den Biggelaar; Johannes J. Meij; Marijke Frölich; Juventus Ziem; Helena E. D. Suchiman; Andres Metspalu; P. Eline Slagboom; Rudi G. J. Westendorp

Background Chronic inflammation is involved in the pathogenesis of chronic age-associated, degenerative diseases. Pro-inflammatory host responses that are deleterious later in life may originate from evolutionary selection for genetic variation mediating resistance to infectious diseases under adverse environmental conditions. Methodology/Principal Findings In the Upper-East region of Ghana where infection has remained the leading cause of death, we studied the effect on survival of genetic variations at the IL10 gene locus that have been associated with chronic diseases. Here we show that an IL10 haplotype that associated with a pro-inflammatory innate immune response, characterised by low IL-10 (p = 0.028) and high TNF-α levels (p = 1.39×10−3), was enriched among Ghanaian elders (p = 2.46×10−6). Furthermore, in an environment where the source of drinking water (wells/rivers vs. boreholes) influences mortality risks (HR 1.28, 95% CI [1.09–1.50]), we observed that carriers of the pro-inflammatory haplotype have a survival advantage when drinking from wells/rivers but a disadvantage when drinking from boreholes (pinteraction = 0.013). Resequencing the IL10 gene region did not uncover any additional common variants in the pro-inflammatory haplotype to those SNPs that were initially genotyped. Conclusions/Significance Altogether, these data lend strong arguments for the selection of pro-inflammatory host responses to overcome fatal infection and promote survival in adverse environments.

Collaboration


Dive into the Maris Kuningas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Eline Slagboom

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Diana van Heemst

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Linda May

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

David van Bodegom

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Simon P. Mooijaart

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Albert Hofman

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henning Tiemeier

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Marijke Frölich

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge