Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marisa Ionta is active.

Publication


Featured researches published by Marisa Ionta.


Journal of Medicinal Chemistry | 2016

Design, Synthesis, and Pharmacological Evaluation of Novel N-Acylhydrazone Derivatives as Potent Histone Deacetylase 6/8 Dual Inhibitors

Daniel A. Rodrigues; Guilherme Álvaro Ferreira-Silva; Ana Carolina dos Santos Ferreira; Renan Amphilophio Fernandes; Jolie K. Kwee; Carlos Mauricio R. Sant’Anna; Marisa Ionta; Carlos Alberto Manssour Fraga

This manuscript describes a novel class of N-acylhydrazone (NAH) derivatives that act as histone deacetylase (HDAC) 6/8 dual inhibitors and were designed from the structure of trichostatin A (1). Para-substituted phenyl-hydroxamic acids presented a more potent inhibition of HDAC6/8 than their meta analogs. In addition, the effect of compounds (E)-4-((2-(4-(dimethylamino)benzoyl)hydrazono)methyl)-N-hydroxybenzamide (3c) and (E)-4-((2-(4-(dimethylamino)benzoyl)-2-methylhydrazono)methyl)-N-hydroxybenzamide (3f) on the acetylation of α-tubulin revealed an increased level of acetylation. These two compounds also affected cell migration, indicating their inhibition of HDAC6. An analysis of the antiproliferative activity of these compounds, which presented the most potent activity, showed that compound 3c induced cell cycle arrest and 3g induced apoptosis through caspase 3/7 activation. These results suggest HDAC6/8 as a potential target of future molecular therapies for cancer.


Toxicology in Vitro | 2016

Alkaloids derived from flowers of Senna spectabilis, (−)-cassine and (−)-spectaline, have antiproliferative activity on HepG2 cells for inducing cell cycle arrest in G1/S transition through ERK inactivation and downregulation of cyclin D1 expression

Rodrigo Machado Pereira; Guilherme Álvaro Ferreira-Silva; Marcos Pivatto; Luciana A. Santos; Vanderlan da Silva Bolzani; Daniela Aparecida Chagas de Paula; Jaqueline Carvalho de Oliveira; Cláudio Viegas Junior; Marisa Ionta

Cancer is one of the most critical problems of public health in the world and one of the main challenges for medicine in this century. Unfortunately, most patients are diagnosed at advanced stage, when the treatment options are palliative. Consequently, the search for novel therapeutic options is imperative. In the context, the plants represent an important source for discovering of novel compounds with pharmacological potential including antineoplastic agents. Herein, we aimed to investigate in vitro antiproliferative and cytotoxic potentials of an alkaloid mixture derived from Senna spectabilis, (−)-cassine (1) and (−)-spectaline (2). These alkaloids reduced cell viability in a concentration-dependent manner of six tumor cell lines. From initial screening, HepG2 cells were selected for further investigations. We show that alkaloids 1/2 have an important antiproliferative activity on HepG2 cells due to their ability in inducing cell cycle arrest in G1/S transition. This effect was associated to ERK inactivation and down-regulation of cyclin D1 expression. In addition, we evidenced a disruption of the microfilaments and microtubules in a consequence of the treatment. Taken together, the data showed by the first time that alkaloids 1/2 strongly inhibit cell proliferation of hepatocellular carcinoma cells. Therefore, they represent promise antitumor compounds against liver cancer and should be considered for further anticancer in vivo studies.


Molecules | 2015

7-Epiclusianone, a Benzophenone Extracted from Garcinia brasiliensis (Clusiaceae), Induces Cell Cycle Arrest in G1/S Transition in A549 Cells

Marisa Ionta; Guilherme Álvaro Ferreira-Silva; Evandro Luís de Oliveira Niero; Éderson D’M. Costa; Adam Martens; Welton Rosa; Marisi G. Soares; Gláucia Maria Machado-Santelli; João Henrique G. Lago; Marcelo Henrique dos Santos

Lung cancer is the leading cause of cancer deaths in the world. Disease stage is the most relevant factor influencing mortality. Unfortunately, most patients are still diagnosed at an advanced stage and their five-year survival rate is only 4%. Thus, it is relevant to identify novel drugs that can improve the treatment options for lung cancer. Natural products have been an important source for the discovery of new compounds with pharmacological potential including antineoplastic agents. We have previously isolated a prenylated benzophenone (7-epiclusianone) from Garcinia brasiliensis (Clusiaceae) that has several biological properties including antiproliferative activity against cancer cell lines. In continuation with our studies, the present work aimed to investigate the mechanisms involved with antiproliferative activity of 7-epiclusianone in A549 cells. Our data showed that 7-epiclusianone reduced the viability of A549 cells in a concentration-dependent manner (IC50 of 16.13 ± 1.12 μM). Cells were arrested in G1/S transition and apoptosis was induced. In addition, we observed morphological changes with cytoskeleton disorganization in consequence of the treatment. Taken together, the results showed that cell cycle arrest in G1/S transition is the main mechanism involved with antiproliferative activity of 7-epiclusianone. Our results are promising and open up the prospect of using this compound in further anticancer in vivo studies.


BMC Complementary and Alternative Medicine | 2015

Anticancer activity of 7-epiclusianone, a benzophenone from Garcinia brasiliensis, in glioblastoma

Leilane Sales; Julia Alejandra Pezuk; Kleiton Silva Borges; María Sol Brassesco; Carlos Alberto Scrideli; Luiz Gonzaga Tone; Marcelo Henrique dos Santos; Marisa Ionta; Jaqueline Carvalho de Oliveira

BackgroundGlioblastoma is the most common tumor of the central nervous system and one of the hardest tumors to treat. Consequently, the search for novel therapeutic options is imperative. 7-epiclusianone, a tetraprenylated benzophenone isolated from the epicarp of the native plant Garcinia brasiliensis, exhibits a range of biological activities but its prospect anticancer activity is underexplored. Thus, the aim of the present study was to evaluate the influence of 7-epiclusianone on proliferation, clonogenic capacity, cell cycle progression and induction of apoptosis in two glioblastoma cell lines (U251MG and U138MG).MethodsCell viability was measured by the MTS assay; for the clonogenic assay, colonies were stained with Giemsa and counted by direct visual inspection; For cell cycle analysis, cells were stained with propidium iodide and analyzed by cytometry; Cyclin A expression was determined by immunoblotting; Apoptotic cell death was determined by annexin V fluorescein isothiocyanate labeling and Caspase-3 activity in living cells.ResultsViability of both cell lines was drastically inhibited; moreover, the colony formation capacity was significantly reduced, demonstrating long-term effects even after removal of the drug. 7-epiclusianone treatment at low concentrations also altered cell cycle progression, decreased the S and G2/M populations and at higher concentrations increased the number of cells at sub-G1, in concordance with the increase of apoptotic cells.ConclusionThe present study demonstrates for the first time the anticancer potential of 7-epiclusianone against glioblastoma cells, thus meriting its further investigation as a potential therapeutic agent.


Journal of the Brazilian Chemical Society | 2015

Caesalpinioflavone, a New Cytotoxic Biflavonoid Isolated from Caesalpinia pluviosa var. peltophoroides

João Zanin; Murilo Massoni; Marcelo Henrique dos Santos; Giovana C. Freitas; Evandro Luís de Oliveira Niero; Renata R. Schefer; João Henrique G. Lago; Marisa Ionta; Marisi G. Soares

The present study aimed to investigate the presence of compounds with antitumor activity in the plant Caesalpinia pluviosa var. peltophoroides. From bioactivity guided studies it was possible to isolate a new biflavonoid, named caesalpinioflavone, whose chemical structure was determined by spectroscopic (1H and 13C nucler magnetic ressonace, homonuclear correlation spectroscopy and heteronuclear multiple-bond correlation spectroscopy) and spectrometric (high resolution electrospray ionization mass) methods. According to in vitro assays, caesalpinioflavone was effective in reducing the cell viability of tumor cell lines A549, MCF7, Hst578T and HTC. This effect was consequent of cell cycle arrest in G1/S transition (A549 and MCF7) and cytotoxic activity (Hs578T and HTC). Taken together, these data indicate that caesalpinioflavone has a promising antitumor activity.


Toxicology in Vitro | 2017

[Ru(pipe)(dppb)(bipy)]PF6: A novel ruthenium complex that effectively inhibits ERK activation and cyclin D1 expression in A549 cells

Guilherme Álvaro Ferreira-Silva; Marina M. Ortega; Marco A. Banionis; Graciana Y. Garavelli; Felipe T. Martins; Julia S.M. Dias; Claudio Viegas; Jaqueline Carvalho de Oliveira; Fabio B. do Nascimento; Antonio C. Doriguetto; Marília I.F. Barbosa; Marisa Ionta

Lung cancer is the most frequent type of cancer worldwide. In Brazil, only 14% of the patients diagnosed with lung cancer survived 5years in the last decades. Although improvements in the therapeutic approach, it is relevant to identify new chemotherapeutic agents. In this framework, ruthenium metal compounds emerge as a promising alternative to platinum-based compounds once they displayed lower cytotoxicity and more selectivity for tumor cells. The present study aimed to evaluate the antitumor potential of innovative ruthenium(II) complex, [Ru(pipe)(dppb)(bipy)]PF6 (PIPE) on A549 cells, which is derived from non-small cell lung cancer. Results demonstrated that PIPE effectively reduced the viability and proliferation rate of A549 cells. When PIPE was used at 9μM there was increase in G0/G1 cell population with concomitant reduction in frequency of cells in S-phase, indicating cell cycle arrest in G1/S transition. Antiproliferative activity of PIPE was associated to its ability of reducing cyclin D1 expression and ERK phosphorylation levels. Cytotoxic activity of PIPE on A549 cells was observed when PIPE was used at 18μM, which was associated to its ability of inducing apoptosis by intrinsic pathway. Taken together, the data demonstrated that PIPE is a promising antitumor agent and further in vivo studies should be performed.


Journal of Physiological Sciences | 2016

Postnatal overnutrition in mice leads to impaired pulmonary mechanics in response to salbutamol.

Vanessa Pereira Teixeira; Daniela Aparecida de Brito Cervilha; Layla D.M. Cabral; Luiz M. Oliveira; Erika K. Incerpi; Rômulo Dias Novaes; Marisa Ionta; Roseli Soncini

Obesity increases the risk of respiratory disease, which is associated with airway hyperresponsiveness. Although the molecular underpinnings of this phenomenon are not well established, lung remodeling is known as an important factor in this process and could potentially explain compromised lung functions. In the present study, the obesity was induced by postnatal overnutrition in Swiss mice and we investigated the pulmonary mechanics after aerosolization of saline, methacholine, and salbutamol. The lungs were prepared for morphometric analysis. Obese animals showed bronchoconstriction in response to methacholine, as evidenced by airway and tissue resistance, tissue elastance, and hysteresivity. Salbutamol was effective at recovering the response only for airway resistance but not for tissue mechanics. We suggest that this impaired response in obese mice is related to collapsed alveolar, to inflammatory cells, and to elevated deposition collagen fibers in parenchymal tissue.


Toxicology in Vitro | 2018

Synthetic resveratrol-curcumin hybrid derivative inhibits mitosis progression in estrogen positive MCF-7 breast cancer cells

Matheus de Freitas Silva; Letícia Ferreira Coelho; Isadora Mitestainer Guirelli; Rodrigo Machado Pereira; Guilherme Álvaro Ferreira-Silva; Graciana Y. Graravelli; Renato de Oliveira Horvath; Ester Siqueira Caixeta; Marisa Ionta; Claudio Viegas

Curcumin (1) and resveratrol (2) are bioactive natural compounds that display wide pharmacological properties, including antitumor activity. However, their clinical application has been limited due to their low solubility and bioavailability. Nevertheless, independent studies have considered these compounds as interesting prototypes for developing new chemical structures useful for anticancer therapy. Here in, we report the synthesis of novel curcumin-like hydrazide analogues (3a and 3b), and a series of curcumin-resveratrol hybrid compounds (4a-f), and the evaluation of their cytotoxic potential on three tumor cell lines MCF-7 (breast), A549 (lung), and HepG2 (liver). Cell viability was significantly reduced in all tested cell lines when compounds 4c-4e were used. The IC50 values for these compounds on MCF-7 cells were lower than those for curcumin, resveratrol, or curcumin combined with resveratrol. We evidenced that 4c promoted a drastic increase of G2/M population. The accumulation of cells in mitosis onset in treated cultures was due to, at least in part, the ability of 4c to modulate nuclear kinase proteins, which orchestrate important events in mitosis progression. We have also observed significant reduction of the relative RNAm abundance of CCNB1, PLK1, AURKA, AURKB in samples treated with 4c, with concomitant increase of CDKN1A (p21). Thus, compound 4c is a promising multi-target antitumor agent that should be considered for further in vivo studies.


Toxicology in Vitro | 2017

Casearin D inhibits ERK phosphorylation and induces downregulation of cyclin D1 in HepG2 cells

Guilherme Álvaro Ferreira-Silva; Carla Carolina Lopes Lages; Patricia Sartorelli; Flávia Rie Hasegawa; Marisi G. Soares; Marisa Ionta

Cancer is a public health problem which represents the second cause of death in the world. In this framework, it is necessary to identify novel compounds with antineoplastic potential. Plants are an important source for discovering novel compounds with pharmacological potential. In this study, we aimed to investigate the antiproliferative potential of isolated compounds from Casearia sylvestris on tumor cell lines. Crude extract effectively reduced cell viability of 4 tumor cell lines (HepG2, A549, U251-MG, and HT-144) after 48h treatment. HepG2 and HT-144 were the most responsive cells. Three fractions (aqueous ethanol, n-hexane and ethyl acetate) were tested against HepG2 and HT-144 cells and we observed that compounds with antiproliferative activity were concentrated in n-hexane and ethyl acetate fractions. The casearins A, G and J were isolated from n-hexane fraction, while casearin D was obtained from ethyl acetate fraction. We demonstrated that casearin D significantly inhibited the clonogenic capacity of HepG2 cells after 24h exposure indicating its antiproliferative activity. In addition, G1/S transition cell cycle arrest in HepG2 cells was also observed. These effects are related, at least in part, to ability of the casearin D in reducing ERK phosphorylation and cyclin D1 expression levels.


Anti-Cancer Drugs | 2017

YM155 induces apoptosis in p53-deficient T-acute lymphoblastic leukemia cells independent of survivin inhibition.

Leilane Sales; Graziella R. de Sousa; Guilherme Álvaro Ferreira-Silva; Angel Mauricio Castro-Gamero; Marisa Ionta

T-acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer that arises from the malignant transformation of T-cell progenitors. Despite the significant progress in current treatment, challenges remain the lifelong morbidity after current chemotherapy regimens and postrelapse survival. In addition, patients with T-ALL have inferior outcomes compared with those with B-cell precursor; consequently, novel therapeutic approaches are still necessary to improve the outcome in this cohort. YM155 is an imidazolium derivative originally discovered as a suppressant of survivin expression. It has been reported that YM155 has potent antiproliferative activity on a variety of human cancer cell lines; however, its effects in T-ALL cells have been underexplored. The aim of the present study was to examine the effects of YM155 on p53-deficient T-ALL cell lines, JURKAT and CCRF-CEM. Resazurin dye was used to evaluate cell viability. Colony formation was observed in MethoCult methylcellulose medium. Apoptotic cells were detected by flow cytometry (annexin V labeling and TUNEL assay). Cell cycle analysis was carried out by DNA quantification in flow cytometry. DNA damage was assessed using a comet assay and the survivin expression profile was evaluated by real-time PCR and immunoblotting. YM155 treatment decreased cell viability and clonogenicity capacity of T-ALL cells, increased the apoptosis index and DNA damage, and altered the cell cycle dynamic, independent of survivin inhibition. Taken together, the data reinforce that YM155 may be useful as a therapeutic possibility to combat leukemia.

Collaboration


Dive into the Marisa Ionta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marisi G. Soares

Universidade Federal de Alfenas

View shared research outputs
Top Co-Authors

Avatar

Julia S.M. Dias

Universidade Federal de Alfenas

View shared research outputs
Top Co-Authors

Avatar

Marília I.F. Barbosa

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar

Antonio C. Doriguetto

Universidade Federal de Alfenas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge