Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marisa Vieira de Queiroz is active.

Publication


Featured researches published by Marisa Vieira de Queiroz.


Journal of Microbiology | 2013

Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques

Tiago de Souza Leite; Andréia Cnossen-Fassoni; O. L. Pereira; Eduardo S. G. Mizubuti; Elza Fernandes de Araújo; Marisa Vieira de Queiroz

Fungal endophytes were isolated from the leaves of soybean cultivars in Brazil using two different isolation techniques — fragment plating and the innovative dilution-to-extinction culturing — to increase the species richness, frequency of isolates and diversity. A total of 241 morphospecies were obtained corresponding to 62 taxa that were identified by analysis of the internal transcribed spacer (ITS) of the ribosomal DNA (rDNA). The Phylum Ascomycota predominated, representing 99% and 95.2% of isolates in the Monsoy and Conquista cultivars, respectively, whereas the Phylum Basidiomycota represented 1% and 4.8% of isolates, respectively. The genera Ampelomyces, Annulohypoxylon, Guignardia, Leptospora, Magnaporthe, Ophiognomonia, Paraconiothyrium, Phaeosphaeriopsis, Rhodotorula, Sporobolomyces, and Xylaria for the first time were isolated from soybean; this suggests that soybean harbours novel and highly diverse fungi. The yeasts genera Rhodotorula and Sporobolomyces (subphylum Pucciniomycotina) represent the Phylum Basidiomycota. The species richness was greater when both isolation techniques were used. The diversity of fungal endophytes was similar in both cultivars when the same isolation technique was used except for Hill’s index, N1. The use of ITS region sequences allowed the isolates to be grouped according to Order, Class and Phylum. Ampelomyces, Chaetomium, and Phoma glomerata are endophytic species that may play potential roles in the biological control of soybean pathogens. This study is one of the first to apply extinction-culturing to isolate fungal endophytes in plant leaves, thus contributing to the development and improvement of this technique for future studies.


Biotechnology Letters | 2002

Molecular characterization and evaluation of pectinase and cellulase production of Penicillium spp.

Jorge Fernando Pereira; Marisa Vieira de Queiroz; Eliane Aparecida Gomes; Júpiter Israel Muro-Abad; Elza Fernandes de Araújo

Penicillium species were analyzed with molecular markers and for pectinase and cellulase production. RAPD and PCR-RFLP analysis indicated high polymorphism among at least 5 of 10 Penicillium species. Five species were chosen for pectinase and cellulase production in liquid medium and four of which appeared similar based on molecular analyses. P. brevicompactum and P. griseoroseum gave the highest pectinase production and were highly divergent by molecular techniques.


Brazilian Journal of Microbiology | 2007

Morphological and molecular differentiation of the pectinase producing fungi Penicillium expansum and Penicillium griseoroseum

Patrícia Gomes Cardoso; Marisa Vieira de Queiroz; O. L. Pereira; Elza Fernandes de Araújo

Two species from the genus Penicillium, Penicillium expansum and P. griseoroseum (Brasilian isolates) were characterized morphologic and molecularlly. Morphological variability was detected among isolates in regard to colony morphology and to conidia coloration. The molecular characterization was based on the RAPD markers, telomeric fingerprinting and ITS sequencing. A total of 78 RAPD primers were used and 8 presented differences in band patterns with 54% of the amplified polymorphic fragments. The monomorphic fragments of 600 bp (P. expansum) and 594 bp (P. griseoroseum) were amplified. The only internal transcribed spacer region variation detected between the two species was the additional six initial nucleotides. The analysis by telomeric fingerprinting showed polymorphism between both species and the chromosome minimal numbers estimated were three. The polymorphism observed in the organization of the subtelomeric region in the genome of two Penicillium species within the high homogeneous Penicillium subgenus is for the first time reported and perhaps can be employed in future phylogenetic studies.


BMC Genomics | 2012

Abundance, distribution and potential impact of transposable elements in the genome of Mycosphaerella fijiensis

Mateus Ferreira Santana; José Cf Silva; Aline Duarte Batista; Lílian Emídio Ribeiro; Gilvan Ferreira da Silva; Elza Fernandes de Araújo; Marisa Vieira de Queiroz

BackgroundMycosphaerella fijiensis is a ascomycete that causes Black Sigatoka in bananas. Recently, the M. fijiensis genome was sequenced. Repetitive sequences are ubiquitous components of fungal genomes. In most genomic analyses, repetitive sequences are associated with transposable elements (TEs). TEs are dispersed repetitive DNA sequences found in a host genome. These elements have the ability to move from one location to another within the genome, and their insertion can cause a wide spectrum of mutations in their hosts. Some of the deleterious effects of TEs may be due to ectopic recombination among TEs of the same family. In addition, some transposons are physically linked to genes and can control their expression. To prevent possible damage caused by the presence of TEs in the genome, some fungi possess TE-silencing mechanisms, such as RIP (Repeat Induced Point mutation). In this study, the abundance, distribution and potential impact of TEs in the genome of M. fijiensis were investigated.ResultsA total of 613 LTR-Gypsy and 27 LTR-Copia complete elements of the class I were detected. Among the class II elements, a total of 28 Mariner, five Mutator and one Harbinger complete elements were identified. The results of this study indicate that transposons were and are important ectopic recombination sites. A distribution analysis of a transposable element from each class of the M. fijiensis isolates revealed variable hybridization profiles, indicating the activity of these elements. Several genes encoding proteins involved in important metabolic pathways and with potential correlation to pathogenicity systems were identified upstream and downstream of transposable elements. A comparison of the sequences from different transposon groups suggested the action of the RIP silencing mechanism in the genome of this microorganism.ConclusionsThe analysis of TEs in M. fijiensis suggests that TEs play an important role in the evolution of this organism because the activity of these elements, as well as the rearrangements caused by ectopic recombination, can result in deletion, duplication, inversion and translocation. Some of these changes can potentially modify gene structure or expression and, thus, facilitate the emergence of new strains of this pathogen.


Mycorrhiza | 2010

Identification of differentially expressed genes of the fungus Hydnangium sp. during the pre-symbiotic phase of the ectomycorrhizal association with Eucalyptus grandis.

Irene da Silva Coelho; Marisa Vieira de Queiroz; Maurício Dutra Costa; Maria Catarina Megumi Kasuya; Elza Fernandes de Araújo

The pre-symbiotic phase that precedes physical contact between symbionts is a crucial phase in determining their compatibility, allowing the formation of the ectomycorrhiza. A subtractive cDNA library representing the differentially expressed genes of the fungus Hydnangium sp. in the pre-symbiotic phase was constructed using fungal mycelia obtained through the in vitro mycorrhization technique. The fungus was cultured in the presence of Eucalyptus grandis roots, but with no contact between the hyphae and the root system of the host plant. Genes that code for proteins related to carbohydrate, amino acid, and energy metabolisms, transcription, and protein synthesis, cellular communication, signal transduction, stress response, transposons, and proteins related to the biogenesis of cell components were identified among the 131 expressed sequence tags. Expression of the genes that code for acetyl-CoA acetyltransferase, pyruvate dehydrogenase, ATP synthase, a voltage-dependent protein from the selective ion channel, and hydrophobin was evaluated by the RT-qPCR technique, confirming the activation of these genes in this phase of the association.


Microbiology | 2015

Galleria mellonella is an effective model to study Actinobacillus pleuropneumoniae infection

Monalessa Fábia Pereira; Ciro César Rossi; Marisa Vieira de Queiroz; Gustavo Ferreira Martins; Clement Isaac; Janine T. Bossé; Yanwen Li; Brendan W. Wren; Vanessa S. Terra; Jon Cuccui; Paul R. Langford; Denise Mara Soares Bazzolli

Actinobacillus pleuropneumoniae is responsible for swine pleuropneumonia, a respiratory disease that causes significant global economic loss. Its virulence depends on many factors, such as capsular polysaccharides, RTX toxins and iron-acquisition systems. Analysis of virulence may require easy-to-use models that approximate mammalian infection and avoid ethical issues. Here, we investigate the potential use of the wax moth Galleria mellonella as an informative model for A. pleuropneumoniae infection. Genotypically distinct A. pleuropneumoniae clinical isolates were able to kill larvae at 37 °C but had different LD50 values, ranging from 10(4) to 10(7) c.f.u. per larva. The most virulent isolate (1022) was able to persist and replicate within the insect, while the least virulent (780) was rapidly cleared. We observed a decrease in haemocyte concentration, aggregation and DNA damage post-infection with isolate 1022. Melanization points around bacterial cells were observed in the fat body and pericardial tissues of infected G. mellonella, indicating vigorous cell and humoral immune responses close to the larval dorsal vessel. As found in pigs, an A. pleuropneumoniae hfq mutant was significantly attenuated for infection in the G. mellonella model. Additionally, the model could be used to assess the effectiveness of several antimicrobial agents against A. pleuropneumoniae in vivo. G. mellonella is a suitable inexpensive alternative infection model that can be used to study the virulence of A. pleuropneumoniae, as well as assess the effectiveness of antimicrobial agents against this pathogen.


BMC Genomics | 2014

Characterization and potential evolutionary impact of transposable elements in the genome of Cochliobolus heterostrophus

Mateus Ferreira Santana; José Cf Silva; Eduardo S. G. Mizubuti; Elza Fernandes de Araújo; Bradford Condon; B. G. Turgeon; Marisa Vieira de Queiroz

BackgroundCochliobolus heterostrophus is a dothideomycete that causes Southern Corn Leaf Blight disease. There are two races, race O and race T that differ by the absence (race O) and presence (race T) of ~ 1.2-Mb of DNA encoding genes responsible for the production of T-toxin, which makes race T much more virulent than race O. The presence of repetitive elements in fungal genomes is considered to be an important source of genetic variability between different species.ResultsA detailed analysis of class I and II TEs identified in the near complete genome sequence of race O was performed. In total in race O, 12 new families of transposons were identified. In silico evidence of recent activity was found for many of the transposons and analyses of expressed sequence tags (ESTs) demonstrated that these elements were actively transcribed. Various potentially active TEs were found near coding regions and may modify the expression and structure of these genes by acting as ectopic recombination sites. Transposons were found on scaffolds carrying polyketide synthase encoding genes, responsible for production of T-toxin in race T. Strong evidence of ectopic recombination was found, demonstrating that TEs can play an important role in the modulation of genome architecture of this species. The Repeat Induced Point mutation (RIP) silencing mechanism was shown to have high specificity in C. heterostrophus, acting only on transposons near coding regions.ConclusionsNew families of transposons were identified. In C. heterostrophus, the RIP silencing mechanism is efficient and selective. The co-localization of effector genes and TEs, therefore, exposes those genes to high rates of point mutations. This may accelerate the rate of evolution of these genes, providing a potential advantage for the host. Additionally, it was shown that ectopic recombination promoted by TEs appears to be the major event in the genome reorganization of this species and that a large number of elements are still potentially active. So, this study provides information about the potential impact of TEs on the evolution of C. heterostrophus.


Microbiological Research | 2015

Diversity of endophytic fungi in Glycine max

Elio Gomes Fernandes; O. L. Pereira; Cynthia Cânedo da Silva; Cláudia Braga Pereira Bento; Marisa Vieira de Queiroz

Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal community in G. max leaves and roots, and identifies the genetic relationships among the isolated species.


Applied and Environmental Microbiology | 2015

Distribution and Genetic Diversity of Bacteriocin Gene Clusters in Rumen Microbial Genomes.

Analice C. Azevedo; Cláudia Braga Pereira Bento; Jeronimo C. Ruiz; Marisa Vieira de Queiroz; Hilário Cuquetto Mantovani

ABSTRACT Some species of ruminal bacteria are known to produce antimicrobial peptides, but the screening procedures have mostly been based on in vitro assays using standardized methods. Recent sequencing efforts have made available the genome sequences of hundreds of ruminal microorganisms. In this work, we performed genome mining of the complete and partial genome sequences of 224 ruminal bacteria and 5 ruminal archaea to determine the distribution and diversity of bacteriocin gene clusters. A total of 46 bacteriocin gene clusters were identified in 33 strains of ruminal bacteria. Twenty gene clusters were related to lanthipeptide biosynthesis, while 11 gene clusters were associated with sactipeptide production, 7 gene clusters were associated with class II bacteriocin production, and 8 gene clusters were associated with class III bacteriocin production. The frequency of strains whose genomes encode putative antimicrobial peptide precursors was 14.4%. Clusters related to the production of sactipeptides were identified for the first time among ruminal bacteria. BLAST analysis indicated that the majority of the gene clusters (88%) encoding putative lanthipeptides contained all the essential genes required for lanthipeptide biosynthesis. Most strains of Streptococcus (66.6%) harbored complete lanthipeptide gene clusters, in addition to an open reading frame encoding a putative class II bacteriocin. Albusin B-like proteins were found in 100% of the Ruminococcus albus strains screened in this study. The in silico analysis provided evidence of novel biosynthetic gene clusters in bacterial species not previously related to bacteriocin production, suggesting that the rumen microbiota represents an underexplored source of antimicrobial peptides.


Journal of Applied Microbiology | 2015

Endophytic fungi from the genus Colletotrichum are abundant in the Phaseolus vulgaris and have high genetic diversity

L.L. Gonzaga; L.E.O Costa; T.T. Santos; Elza Fernandes de Araújo; Marisa Vieira de Queiroz

To evaluate the diversity of endophytic fungi from the leaves of the common bean and the genetic diversity of endophytic fungi from the genus Colletotrichum using IRAP (inter‐retrotransposon amplified polymorphism) and REMAP (retrotransposon‐microsatellite amplified polymorphism) analyses.

Collaboration


Dive into the Marisa Vieira de Queiroz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mateus Ferreira Santana

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorge Fernando Pereira

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Eduardo S. G. Mizubuti

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

O. L. Pereira

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Casley Borges de Queiroz

Universidade Federal de Viçosa

View shared research outputs
Researchain Logo
Decentralizing Knowledge