Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariska Wesseling is active.

Publication


Featured researches published by Mariska Wesseling.


Journal of Orthopaedic Research | 2015

Gait alterations to effectively reduce hip contact forces

Mariska Wesseling; Friedl De Groote; Christophe Meyer; Kristoff Corten; Jean-Pierre Simon; Kaat Desloovere; Ilse Jonkers

Patients with hip pathology present alterations in gait which have an effect on joint moments and loading. In knee osteoarthritic patients, the relation between medial knee contact forces and the knee adduction moment are currently being exploited to define gait retraining strategies to effectively reduce pain and disease progression. However, the relation between hip contact forces and joint moments has not been clearly established. Therefore, this study aims to investigate the effect of changes in hip and pelvis kinematics during gait on internal hip moments and contact forces which is calculated using muscle driven simulations. The results showed that frontal plane kinetics have the largest effect on hip contact forces. Given the high correlation between the change in hip adduction moment and contact force at initial stance (R2 = 0.87), this parameter can be used to alter kinematics and predict changes in contact force. At terminal stance the hip adduction and flexion moment can be used to predict changes in contact force (R2 = 0.76). Therefore, gait training that focuses on decreasing hip adduction moments, a wide base gait pattern, has the largest potential to reduce hip contact forces.


Journal of Bone and Mineral Research | 2015

Loading of Hip Measured by Hip Contact Forces at Different Speeds of Walking and Running.

Georgios Giarmatzis; Ilse Jonkers; Mariska Wesseling; Sam Van Rossom; Sabine Verschueren

Exercise plays a pivotal role in maximizing peak bone mass in adulthood and maintaining it through aging, by imposing mechanical loading on the bone that can trigger bone mineralization and growth. The optimal type and intensity of exercise that best enhances bone strength remains, however, poorly characterized, partly because the exact peak loading of the bone produced by the diverse types of exercises is not known. By means of integrated motion capture as an input to dynamic simulations, contact forces acting on the hip of 20 young healthy adults were calculated during walking and running at different speeds. During walking, hip contact forces (HCFs) have a two‐peak profile whereby the first peak increases from 4.22 body weight (BW) to 5.41 BW and the second from 4.37 BW to 5.74 BW, by increasing speed from 3 to 6 km/h. During running, there is only one peak HCF that increases from 7.49 BW to 10.01 BW, by increasing speed from 6 to 12 km/h. Speed related profiles of peak HCFs and ground reaction forces (GRFs) reveal a different progression of the two peaks during walking. Speed has a stronger impact on peak HCFs rather than on peak GRFs during walking and running, suggesting an increasing influence of muscle activity on peak HCF with increased speed. Moreover, results show that the first peak of HCF during walking can be predicted best by hip adduction moment, and the second peak of HCF by hip extension moment. During running, peak HCF can be best predicted by hip adduction moment. The present study contributes hereby to a better understanding of musculoskeletal loading during walking and running in a wide range of speeds, offering valuable information to clinicians and scientists exploring bone loading as a possible nonpharmacological osteogenic stimulus.


Journal of Orthopaedic Research | 2015

Biomechanical gait features associated with hip osteoarthritis: Towards a better definition of clinical hallmarks.

Christophe Meyer; Kristoff Corten; Steffen Fieuws; Kevin Deschamps; Davide Monari; Mariska Wesseling; Jean-Pierre Simon; Kaat Desloovere

Critical appraisal of the literature highlights that the discriminative power of gait‐related features in patients with hip osteoarthritis (OA) has not been fully explored. We aimed to reduce the number of gait‐related features and define the most discriminative ones comparing the three‐dimensional gait analysis of 20 patients with hip osteoarthritis (OA) with those of 17 healthy peers. First, principal component analysis was used to reduce the high‐dimensional gait data into a reduced set of interpretable variables for further analysis, including tests for group differences. These differences were indicative for the selection of the top 10 variables to be included into linear discriminant analysis models (LDA). Our findings demonstrated the successful data reduction of hip osteoarthritic‐related gait features with a high discriminatory power. The combination of the top variables into LDA models clearly separated groups, with a maximum misclassification error rate of 19%, estimated by cross‐validation. Decreased hip/knee extension, hip flexion and internal rotation moment were gait features with the highest discriminatory power. This study listed the most clinically relevant gait features characteristics of hip OA. Moreover, it will help clinicians and physiotherapists understand the movement pathomechanics related to hip OA useful in the management and design of rehabilitation intervention.


Journal of Orthopaedic Research | 2015

Muscle optimization techniques impact the magnitude of calculated hip joint contact forces

Mariska Wesseling; L.C. Derikx; F. De Groote; Ward Bartels; Christophe Meyer; Nicolaas Jacobus Joseph Verdonschot; Ilse Jonkers

In musculoskeletal modelling, several optimization techniques are used to calculate muscle forces, which strongly influence resultant hip contact forces (HCF). The goal of this study was to calculate muscle forces using four different optimization techniques, i.e., two different static optimization techniques, computed muscle control (CMC) and the physiological inverse approach (PIA). We investigated their subsequent effects on HCFs during gait and sit to stand and found that at the first peak in gait at 15–20% of the gait cycle, CMC calculated the highest HCFs (median 3.9 times peak GRF (pGRF)). When comparing calculated HCFs to experimental HCFs reported in literature, the former were up to 238% larger. Both static optimization techniques produced lower HCFs (median 3.0 and 3.1 pGRF), while PIA included muscle dynamics without an excessive increase in HCF (median 3.2 pGRF). The increased HCFs in CMC were potentially caused by higher muscle forces resulting from co‐contraction of agonists and antagonists around the hip. Alternatively, these higher HCFs may be caused by the slightly poorer tracking of the net joint moment by the muscle moments calculated by CMC. We conclude that the use of different optimization techniques affects calculated HCFs, and static optimization approached experimental values best.


Journal of Orthopaedic Research | 2014

Hip contact force in presence of aberrant bone geometry during normal and pathological gait

Lode Bosmans; Mariska Wesseling; Kaat Desloovere; Guy Molenaers; Lennart Scheys; Ilse Jonkers

Children with cerebral palsy (CP) often present aberrant hip geometry, specifically increased femoral anteversion and neck‐shaft angle. Furthermore, altered gait patterns are present within this population. We analyzed the effect of aberrant femoral geometry, as present in CP subjects, on hip contact force (HCF) during pathological and normal gait. We ran dynamic simulations of CP‐specific and normal gait using two musculoskeletal models (MSMs), one reflecting normal femoral geometry and one reflecting proximal femoral deformities. The combination of aberrant bone geometry and CP‐specific gait characteristics reduced HCF compared to normal gait on a CP subject‐specific MSM, but drastically changed the orientation of the HCF vector. The HCF was orientated more vertically and anteriorly than compared to HCF orientation during normal gait. Furthermore, subjects with more pronounced bony deformities encountered larger differences in resultant HCF and HCF orientation. When bone deformities were not accounted for in MSMs of pathologic gait, the HCF orientation was more similar to normal children. Thus, our results support a relation between aberrant femoral geometry and joint loading during pathological/normal gait and confirm a compensatory effect of altered gait kinematics on joint loading.


Journal of Biomechanics | 2014

The effect of perturbing body segment parameters on calculated joint moments and muscle forces during gait

Mariska Wesseling; Friedl De Groote; Ilse Jonkers

This study examined the effect of body segment parameter (BSP) perturbations on joint moments calculated using an inverse dynamics procedure and muscle forces calculated using computed muscle control (CMC) during gait. BSP (i.e. segment mass, center of mass location (com) and inertia tensor) of the left thigh, shank and foot of a scaled musculoskeletal model were perturbed. These perturbations started from their nominal value and were adjusted to ±40% in steps of 10%, for both individual as well as combined perturbations in BSP. For all perturbations, an inverse dynamics procedure calculated the ankle, knee and hip moments based on an identical inverse kinematics solution. Furthermore, the effect of applying a residual reduction algorithm (RRA) was investigated. Muscle excitations and resulting muscle forces were calculated using CMC. The results show only a limited effect of an individual parameter perturbation on the calculated moments, where the largest effect is found when perturbing the shank com (MS(com,shank), the ratio of absolute difference in torque and relative parameter perturbation, is maximally -7.81 N m for hip flexion moment). The additional influence of perturbing two parameters simultaneously is small (MS(mass+com,thigh) is maximally 15.2 N m for hip flexion moment). RRA made small changes to the model to increase the dynamic consistency of the simulation (after RRA MS(com,shank) is maximally 5.01 N m). CMC results show large differences in muscle forces when BSP are perturbed. These result from the underlying forward integration of the dynamic equations.


PLOS ONE | 2013

Test-Retest Reliability of Innovated Strength Tests for Hip Muscles

Christophe Meyer; Kristoff Corten; Mariska Wesseling; Koen Peers; Jean-Pierre Simon; Ilse Jonkers; Kaat Desloovere

The burden of hip muscles weakness and its relation to other impairments has been well documented. It is therefore a pre-requisite to have a reliable method for clinical assessment of hip muscles function allowing the design and implementation of a proper strengthening program. Motor-driven dynamometry has been widely accepted as the gold-standard for lower limb muscle strength assessment but is mainly related to the knee joint. Studies focusing on the hip joint are less exhaustive and somewhat discrepant with regard to optimal participants position, consequently influencing outcome measures. Thus, we aimed to develop a standardized test setup for the assessment of hip muscles strength, i.e. flexors/extensors and abductors/adductors, with improved participant stability and to define its psychometric characteristics. Eighteen participants performed unilateral isokinetic and isometric contractions of the hip muscles in the sagittal and coronal plane at two separate occasions. Peak torque and normalized peak torque were measured for each contraction. Relative and absolute measures of reliability were calculated using the intraclass correlation coefficient and standard error of measurement, respectively. Results from this study revealed higher levels of between-day reliability of isokinetic/isometric hip abduction/flexion peak torque compared to existing literature. The least reliable measures were found for hip extension and adduction, which could be explained by a less efficient stabilization technique. Our study additionally provided a first set of reference normalized data which can be used in future research.


Gait & Posture | 2016

Does surgical approach or prosthesis type affect hip joint loading one year after surgery

Mariska Wesseling; Christophe Meyer; Kristoff Corten; Jean-Pierre Simon; Kaat Desloovere; Ilse Jonkers

Several approaches may be used for hip replacement surgery either in combination with conventional total hip arthroplasty (THA) or resurfacing hip arthroplasty (RHA). This study investigates the differences in hip loading during gait one year or more after surgery in three cohorts presenting different surgical procedures, more specific RHA placed using the direct lateral (RHA-DLA, n=8) and posterolateral (RHA-PLA, n=14) approach as well as THA placed using the direct anterior (THA-DAA, n=12) approach. For the DAA and control subjects, hip loading was also evaluated during stair ascent and descent to evaluate whether these motions can better discriminate between patients and controls compared to gait. Musculoskeletal modelling in OpenSim was used to calculate in vivo joint loading. Results showed that for all operated patients, regardless the surgical procedure, hip loading was decreased compared to control subjects, while no differences were found between patient groups. This indicates that THA via DAA results in similar hip loading as a RHA via DLA or PLA. Stair climbing did not result in more distinct differences in hip contact force magnitude between patients and controls, although differences in orientation were more distinct. However, patients after hip surgery did adjust their motion pattern to decrease the magnitude of loading on the hip joint compared to control subjects.


Journal of Biomechanics | 2015

Sensitivity of predicted muscle forces during gait to anatomical variability in musculotendon geometry.

Lode Bosmans; Giordano Valente; Mariska Wesseling; Anke Van Campen; Friedl De Groote; Joris De Schutter; Ilse Jonkers

Scaled generic musculoskeletal models are commonly used to drive dynamic simulations of motions. It is however, acknowledged that not accounting for variability in musculoskeletal geometry and musculotendon parameters may confound the simulation results, even when analysing control subjects. This study documents the three-dimensional anatomical variability of musculotendon origins and insertions of 33 lower limb muscles determined based on magnetic resonance imaging in six subjects. This anatomical variability was compared to the musculotendon point location in a generic musculoskeletal model. Furthermore, the sensitivity of muscle forces during gait, calculated using static optimization, to perturbations of the musculotendon point location was analyzed with a generic model. More specific, a probabilistic approach was used: for each analyzed musculotendon point, the three-dimensional location was re-sampled with a uniform Latin hypercube method within the anatomical variability and the static optimization problem was then re-solved for all perturbations. We found that musculotendon point locations in the generic model showed only variable correspondences with the anatomical variability. The anatomical variability of musculotendon point location did affect the calculated muscle forces: muscles most sensitive to perturbations within the anatomical variability are iliacus and psoas. Perturbation of the gluteus medius anterior, iliacus and psoas induces the largest concomitant changes in muscle forces of the unperturbed muscles. Therefore, when creating subject-specific musculoskeletal models, these attachment points should be defined accurately. In addition, the size of the anatomical variability of the musculotendon point location was not related to the sensitivity of the calculated muscle forces.


Computer Methods in Biomechanics and Biomedical Engineering | 2016

Subject-specific geometrical detail rather than cost function formulation affects hip loading calculation*

Mariska Wesseling; Friedl De Groote; Lode Bosmans; Ward Bartels; Christophe Meyer; Kaat Desloovere; Ilse Jonkers

Abstract This study assessed the relative importance of introducing an increasing level of medical image-based subject-specific detail in bone and muscle geometry in the musculoskeletal model, on calculated hip contact forces during gait. These forces were compared to introducing minimization of hip contact forces in the optimization criterion. With an increasing level of subject-specific detail, specifically MRI-based geometry and wrapping surfaces representing the hip capsule, hip contact forces decreased and were more comparable to contact forces measured using instrumented prostheses (average difference of 0.69 BW at the first peak compared to 1.04 BW for the generic model). Inclusion of subject-specific wrapping surfaces in the model had a greater effect than altering the cost function definition.

Collaboration


Dive into the Mariska Wesseling's collaboration.

Top Co-Authors

Avatar

Ilse Jonkers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Christophe Meyer

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Kaat Desloovere

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Friedl De Groote

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Kristoff Corten

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jean-Pierre Simon

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Lode Bosmans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Kaat Desloovere

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Ilse Jonkers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

F. De Groote

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge