Marissa F. Vogt
Boston University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marissa F. Vogt.
Science | 2015
Bruce M. Jakosky; Joseph M. Grebowsky; J. G. Luhmann; J. E. P. Connerney; F. G. Eparvier; R. E. Ergun; J. S. Halekas; D. Larson; P. Mahaffy; J. P. McFadden; D. F. Mitchell; Nicholas M. Schneider; Richard W. Zurek; S. W. Bougher; D. A. Brain; Y. J. Ma; C. Mazelle; L. Andersson; D. J. Andrews; D. Baird; D. N. Baker; J. M. Bell; Mehdi Benna; M. S. Chaffin; Phillip C. Chamberlin; Y.-Y. Chaufray; John Clarke; Glyn Collinson; Michael R. Combi; Frank Judson Crary
Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere.
Science | 2015
S. W. Bougher; Bruce M. Jakosky; J. S. Halekas; Joseph M. Grebowsky; J. G. Luhmann; P. Mahaffy; J. E. P. Connerney; F. G. Eparvier; R. E. Ergun; D. Larson; J. P. McFadden; D. L. Mitchell; Nicholas M. Schneider; Richard W. Zurek; C. Mazelle; L. Andersson; D. J. Andrews; D. Baird; D. N. Baker; J. M. Bell; Mehdi Benna; D. A. Brain; M. S. Chaffin; Phillip C. Chamberlin; Y.-Y. Chaufray; John Clarke; Glyn Collinson; Michael R. Combi; Frank Judson Crary; T. E. Cravens
The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-to-orbit basis and within individual orbits. These observations help constrain volatile escape processes controlled by thermosphere and ionosphere structure and variability.
Journal of Geophysical Research | 2014
C. M. Jackman; James A. Slavin; M. G. Kivelson; D. J. Southwood; N. Achilleos; M. F. Thomsen; Gina A. DiBraccio; J. P. Eastwood; M. P. Freeman; M. K. Dougherty; Marissa F. Vogt
We present a comprehensive study of the magnetic field and plasma signatures of reconnection events observed with the Cassini spacecraft during the tail orbits of 2006. We examine their “local” properties in terms of magnetic field reconfiguration and changing plasma flows. We also describe the “global” impact of reconnection in terms of the contribution to mass loss, flux closure, and large-scale tail structure. The signatures of 69 plasmoids, 17 traveling compression regions (TCRs), and 13 planetward moving structures have been found. The direction of motion is inferred from the sign of the change in the Bθ component of the magnetic field in the first instance and confirmed through plasma flow data where available. The plasmoids are interpreted as detached structures, observed by the spacecraft tailward of the reconnection site, and the TCRs are interpreted as the effects of the draping and compression of lobe magnetic field lines around passing plasmoids. We focus on the analysis and interpretation of the tailward moving (south-to-north field change) plasmoids and TCRs in this work, considering the planetward moving signatures only from the point of view of understanding the reconnection x-line position and recurrence rates. We discuss the location spread of the observations, showing that where spacecraft coverage is symmetric about midnight, reconnection signatures are observed more frequently on the dawn flank than on the dusk flank. We show an example of a chain of two plasmoids and two TCRs over 3 hours and suggest that such a scenario is associated with a single-reconnection event, ejecting multiple successive plasmoids. Plasma data reveal that one of these plasmoids contains H+ at lower energy and W+ at higher energy, consistent with an inner magnetospheric source, and the total flow speed inside the plasmoid is estimated with an upper limit of 170 km/s. We probe the interior structure of plasmoids and find that the vast majority of examples at Saturn show a localized decrease in field magnitude as the spacecraft passes through the structure. We take the trajectory of Cassini into account, as, during 2006, the spacecrafts largely equatorial position beneath the hinged current sheet meant that it rarely traversed the center of plasmoids. We present an innovative method of optimizing the window size for minimum variance analysis (MVA) and apply this MVA across several plasmoids to explore their interior morphology in more detail, finding that Saturns tail contains both loop-like and flux rope-like plasmoids. We estimate the mass lost downtail through reconnection and suggest that the apparent imbalance between mass input and observed plasmoid ejection may mean that alternative mass loss methods contribute to balancing Saturns mass budget. We also estimate the rate of magnetic flux closure in the tail and find that when open field line closure is active, it plays a very significant role in flux cycling at Saturn.
Journal of Geophysical Research | 2014
Marissa F. Vogt; C. M. Jackman; James A. Slavin; E. J. Bunce; S. W. H. Cowley; M. G. Kivelson; Kk Khurana
Plasmoids and other reconnection-related signatures have been observed in Jupiters magnetotail through analysis of magnetic field and energetic particle data. Previous studies have established the spatial distribution and recurrence period of tail reconnection events, and identified the location of a statistical X-line separating inward and outward flow. Here we present new analysis focusing specifically on 43 plasmoid signatures observed in magnetometer data in order to establish the average properties and internal structure of Jovian plasmoids. We present statistics on the observed plasmoid length scale, duration, radial position, and local time distribution. On average, the observed plasmoids have a ~3 RJ radial extent and ~7 min duration and result in the closure of ~4–8 GWb of open flux from reconnection of open field lines in the postplasmoid plasma sheet. We also determine the amount of mass released and the magnetic flux closed in order to understand the role of tail reconnection in the transport of mass and flux in Jupiters magnetosphere. The observed plasmoid properties are consistent with a mass loss rate of ~0.7–120 kg/s and a flux closure rate of ~7–70 GWb/d. We conclude that tail reconnection and plasmoid release is an important method of flux transport at Jupiter but likely cannot account for the mass input from Io, suggesting that additional mass loss mechanisms may be significant. Finally, we examine the plasmoid interior structure through minimum variance analysis and find that most plasmoids lack a core field and are better described by magnetic loops rather than flux ropes.
Journal of Geophysical Research | 2011
Aikaterini Radioti; Denis Grodent; Jean-Claude Gérard; Marissa F. Vogt; M. Lystrup; Bertrand Bonfond
[1] In this study we present ultraviolet and infrared auroral data from 26 July 1998, and we show the presence of transient auroral polar spots observed throughout the postdusk to predawn local time sector. The polar dawn spots, which are transient polar features observed in the dawn sector poleward of the main emission, were previously associated with the inward moving flow resulting from tail reconnection. In the present study we suggest that nightside spots, which are polar features observed close to the midnight sector, are related to inward moving flow, like the polar dawn spots. We base our conclusions on the near‐simultaneous set of Hubble Space Telescope (HST) and Galileo observations of 26 July 1998, during which HST observed a nightside spot magnetically mapped close to the location of an inward moving flow detected by Galileo on the same day. We derive the emitted power from magnetic field measurements along the observed plasma flow bubble, and we show that it matches the emitted power inferred from HST. Additionally, this study reports for the first time a bright polar spot in the infrared, which could be a possible signature of tail reconnection. The spot appears within an interval of 30 min from the ultraviolet, poleward of the main emission on the ionosphere and in the postdusk sector planetward of the tail reconnection x line on the equatorial plane. Finally, the present work demonstrates that ionospheric signatures of flow bursts released during tail reconnection are instantaneously detected over a wide local time sector.
Journal of Geophysical Research | 2015
Marissa F. Vogt; E. J. Bunce; M. G. Kivelson; Krishan K. Khurana; Raymond J. Walker; Aikaterini Radioti; Bertrand Bonfond; Denis Grodent
The lack of global field models accurate beyond the inner magnetosphere (<30 RJ) makes it difficult to relate Jupiters polar auroral features to magnetospheric source regions. We recently developed a model that maps Jupiters equatorial magnetosphere to the ionosphere using a flux equivalence calculation that requires equal flux at the equatorial and ionospheric ends of flux tubes. This approach is more accurate than tracing field lines in a global field model but only if it is based on an accurate model of Jupiters internal field. At present there are three widely used internal field models—Voyager Io Pioneer 4 (VIP4), the Grodent Anomaly Model (GAM), and VIP Anomaly Longitude (VIPAL). The purpose of this study is to quantify how the choice of an internal field model affects the mapping of various auroral features using the flux equivalence calculation. We find that different internal field models can shift the ionospheric mapping of points in the equatorial plane by several degrees and shift the magnetospheric mapping to the equator by ~30 RJ radially and by less than 1 h in local time. These shifts are consistent with differences in how well each model maps the Ganymede footprint, underscoring the need for more accurate Jovian internal field models. We discuss differences in the mapping of specific auroral features and the size and location of the open/closed field line boundary. Understanding these differences is important for the continued analysis of Hubble Space Telescope images and in planning for Junos arrival at Jupiter in 2016.
Journal of Geophysical Research | 2014
L. C. Ray; N. Achilleos; Marissa F. Vogt; J. N. Yates
The ionization of neutral material ejected by Jupiters volcanically active moon, Io, results in a plasma disc that extends from Ios orbit out through the Jovian magnetosphere. This magnetospheric plasma is coupled to the planetary ionosphere via currents which flow along the magnetic field. Inside of ∼40-RJ, these currents transfer angular momentum from the planet to the magnetospheric plasma, in an attempt to keep the plasma rigidly corotating with the planet. Jupiters main auroral emission is a signature of this current system. To date, one-dimensional models of Jupiters magnetosphere-ionosphere (M-I) coupling have either assumed a dipole field or used a field description appropriate to the postmidnight region of the Jovian magnetosphere. Vogt et al. (2011) described the variation of the N-S component of the magnetic field in the center of the current sheet, BN, with local time and radius. We apply a 1-D model of Jupiters M-I current system every hour in local time using a modified description of the Vogt et al. (2011) magnetic field to investigate how local time variations in the magnetosphere affect the auroral currents and plasma angular velocity. Our model predicts the strongest aurora at dawn, with a minimum in the auroral currents existing from noon through dusk. This is a few hours duskward of the discontinuity predicted by Radioti et al. (2008). While our model predictions are consistent with some of the observations, future MI coupling models must account for the azimuthal bendback in the magnetic field.
Journal of Geophysical Research | 2016
R. L. Gray; S. V. Badman; Bertrand Bonfond; Tomoki Kimura; Hiroaki Misawa; J. D. Nichols; Marissa F. Vogt; L. C. Ray
We present Jovian auroral observations from the 2014 January Hubble Space Telescope (HST) campaign and investigate the auroral signatures of radial transport in the magnetosphere alongside contemporaneous radio and Hisaki EUV data. HST FUV auroral observations on day 11 show, for the first time, a significantly superrotating polar spot poleward of the main emission on the dawnside. The spot transitions from the polar to main emission region in the presence of a locally broad, bright dawnside main emission feature and two large equatorward emission features. Such a configuration of the main emission region is also unreported to date. We interpret the signatures as part of a sequence of inward radial transport processes. Hot plasma inflows from tail reconnection are thought to flow planetward and could generate the superrotating spot. The main emission feature could be the result of flow shears from prior hot inflows. Equatorward emissions are observed. These are evidence of hot plasma injections in the inner magnetosphere. The images are thought to be part of a prolonged period of reconnection. Radio emissions measured by Wind suggest that hectometric (HOM) and non-Io decametric (DAM) signatures are associated with the sequence of auroral signatures, which implies a global magnetospheric disturbance. The reconnection and injection interval can continue for several hours.
Journal of Geophysical Research | 2016
T. Kimura; R. P. Kraft; R. F. Elsner; Graziella Branduardi-Raymont; G. R. Gladstone; Chihiro Tao; Kazuo Yoshioka; Go Murakami; Atsushi Yamazaki; Fuminori Tsuchiya; Marissa F. Vogt; A. Masters; H. Hasegawa; S. V. Badman; E. Roediger; Yuichiro Ezoe; W. R. Dunn; Ichiro Yoshikawa; M. Fujimoto; S. S. Murray
Jupiters X-ray auroral emission in the polar cap region results from particles which have undergone strong field-aligned acceleration into the ionosphere. The origin of precipitating ions and electrons and the time variability in the X-ray emission are essential to uncover the driving mechanism for the high-energy acceleration. The magnetospheric location of the source field line where the X-ray is generated is likely affected by the solar wind variability. However, these essential characteristics are still unknown because the long-term monitoring of the X-rays and contemporaneous solar wind variability has not been carried out. In April 2014, the first long-term multiwavelength monitoring of Jupiters X-ray and EUV auroral emissions was made by the Chandra X-ray Observatory, XMM-Newton, and Hisaki satellite. We find that the X-ray count rates are positively correlated with the solar wind velocity and insignificantly with the dynamic pressure. Based on the magnetic field mapping model, a half of the X-ray auroral region was found to be open to the interplanetary space. The other half of the X-ray auroral source region is magnetically connected with the prenoon to postdusk sector in the outermost region of the magnetosphere, where the Kelvin-Helmholtz (KH) instability, magnetopause reconnection, and quasiperiodic particle injection potentially take place. We speculate that the high-energy auroral acceleration is associated with the KH instability and/or magnetopause reconnection. This association is expected to also occur in many other space plasma environments such as Saturn and other magnetized rotators.
Journal of Geophysical Research | 2016
W. R. Dunn; Graziella Branduardi-Raymont; Ronald F. Elsner; Marissa F. Vogt; L. Lamy; Peter G. Ford; A. J. Coates; G. Randall Gladstone; C. M. Jackman; J. D. Nichols; I. Jonathan Rae; A. Varsani; Tomoki Kimura; Kenneth Calvin Hansen; Jamie M. Jasinski
Abstract We report the first Jupiter X‐ray observations planned to coincide with an interplanetary coronal mass ejection (ICME). At the predicted ICME arrival time, we observed a factor of ∼8 enhancement in Jupiters X‐ray aurora. Within 1.5 h of this enhancement, intense bursts of non‐Io decametric radio emission occurred. Spatial, spectral, and temporal characteristics also varied between ICME arrival and another X‐ray observation two days later. Gladstone et al. (2002) discovered the polar X‐ray hot spot and found it pulsed with 45 min quasiperiodicity. During the ICME arrival, the hot spot expanded and exhibited two periods: 26 min periodicity from sulfur ions and 12 min periodicity from a mixture of carbon/sulfur and oxygen ions. After the ICME, the dominant period became 42 min. By comparing Vogt et al. (2011) Jovian mapping models with spectral analysis, we found that during ICME arrival at least two distinct ion populations, from Jupiters dayside, produced the X‐ray aurora. Auroras mapping to magnetospheric field lines between 50 and 70 R J were dominated by emission from precipitating sulfur ions (S7+,…,14+). Emissions mapping to closed field lines between 70 and 120 R J and to open field lines were generated by a mixture of precipitating oxygen (O7+,8+) and sulfur/carbon ions, possibly implying some solar wind precipitation. We suggest that the best explanation for the X‐ray hot spot is pulsed dayside reconnection perturbing magnetospheric downward currents, as proposed by Bunce et al. (2004). The auroral enhancement has different spectral, spatial, and temporal characteristics to the hot spot. By analyzing these characteristics and coincident radio emissions, we propose that the enhancement is driven directly by the ICME through Jovian magnetosphere compression and/or a large‐scale dayside reconnection event.