Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marissa V. Powers is active.

Publication


Featured researches published by Marissa V. Powers.


FEBS Letters | 2007

Inhibitors of the heat shock response: Biology and pharmacology

Marissa V. Powers; Paul Workman

A number of human diseases can be linked to aberrations in protein folding which cause an imbalance in protein homeostasis. Molecular chaperones, including heat shock proteins, act to assist protein folding, stability and activity in the cell. Attention has begun to focus on modulating the expression and/or activity of this group of proteins for the treatment of a wide variety of human diseases. This review will describe the progress made to date in developing pharmacological modulators of the heat shock response, including both agents which affect the entire heat shock response and those that specifically target the HSP70 and HSP90 chaperone families.


Cancer Cell | 2008

Dual Targeting of HSC70 and HSP72 Inhibits HSP90 Function and Induces Tumor-Specific Apoptosis

Marissa V. Powers; Paul A. Clarke; Paul Workman

Heat-shock protein 70 (HSP70) isoforms contribute to tumorigenesis through their well-documented antiapoptotic activity and via their role as cochaperones for the HSP90 molecular chaperone. HSP70 expression is induced following treatment with HSP90 inhibitors, which may attenuate the cell death effects of this class of inhibitor. Here we show that silencing either heat-shock cognate 70 (HSC70) or HSP72 expression in human cancer cell lines has no effect on HSP90 activity or cell proliferation. However, simultaneously reducing the expression of both of these isoforms induces proteasome-dependent degradation of HSP90 client proteins, G1 cell-cycle arrest, and extensive tumor-specific apoptosis. Importantly, simultaneous silencing of HSP70 isoforms in nontumorigenic cell lines does not result in comparable growth arrest or induction of apoptosis, indicating a potential therapeutic window.


Cell Cycle | 2010

Targeting HSP70 The second potentially druggable heat shock protein and molecular chaperone

Marissa V. Powers; Keith Jones; Caterina Barillari; Isaac M. Westwood; Rob L. M. van Montfort; Paul Workman

The HSF1-mediated stress response pathway is steadily gaining momentum as a critical source of targets for cancer therapy. Key mediators of this pathway include molecular chaperones such as heat shock protein (HSP) 90. There has been considerable progress in targeting HSP90 and the preclinical efficacy and signs of early clinical activity of HSP90 inhibitors have provided proof-of-concept for targeting this group of proteins. The HSP70 family of molecular chaperones are also key mediators of the HSF-1-stress response pathway and have multiple additional roles in protein folding, trafficking and degradation, as well as regulating apoptosis. Genetic and biochemical studies have supported the discovery of HSP70 inhibitors which have the potential for use as single agents or in combination to enhance the effects of classical chemotherapeutic or molecularly targeted agents including HSP90 inhibitors. Here we provide a perspective on the progress made so far in designing agents which target the HSP70 family.


Cancer Research | 2007

Gene and Protein Expression Profiling of Human Ovarian Cancer Cells Treated with the Heat Shock Protein 90 Inhibitor 17-Allylamino-17-Demethoxygeldanamycin

Alison Maloney; Paul A. Clarke; Soren Naaby-Hansen; Robert Stein; Jens-Oliver Koopman; Akunna Akpan; Alice Yang; Marketa Zvelebil; Rainer Cramer; Lindsay Stimson; Wynne Aherne; Udai Banerji; Ian Judson; Swee Y. Sharp; Marissa V. Powers; Emmanuel deBilly; Joanne Salmons; Michael I. Walton; Al Burlingame; Michael D. Waterfield; Paul Workman

The promising antitumor activity of 17-allylamino-17-demethoxygeldanamycin (17AAG) results from inhibition of the molecular chaperone heat shock protein 90 (HSP90) and subsequent degradation of multiple oncogenic client proteins. Gene expression microarray and proteomic analysis were used to profile molecular changes in the A2780 human ovarian cancer cell line treated with 17AAG. Comparison of results with an inactive analogue and an alternative HSP90 inhibitor radicicol indicated that increased expression of HSP72, HSC70, HSP27, HSP47, and HSP90beta at the mRNA level were on-target effects of 17AAG. HSP27 protein levels were increased in tumor biopsies following treatment of patients with 17AAG. A group of MYC-regulated mRNAs was decreased by 17AAG. Of particular interest and novelty were changes in expression of chromatin-associated proteins. Expression of the heterochromatin protein 1 was increased, and expression of the histone acetyltransferase 1 and the histone arginine methyltransferase PRMT5 was decreased by 17AAG. PRMT5 was shown to be a novel HSP90-binding partner and potential client protein. Cellular protein acetylation was reduced by 17AAG, which was shown to have an antagonistic interaction on cell proliferation with the histone deacetylase inhibitor trichostatin A. This mRNA and protein expression analysis has provided new insights into the complex molecular pharmacology of 17AAG and suggested new genes and proteins that may be involved in response to the drug or be potential biomarkers of drug action.


Molecular Cancer Therapeutics | 2007

Inhibition of the Heat Shock Protein 90 Molecular Chaperone in Vitro and in Vivo by Novel, Synthetic, Potent Resorcinylic Pyrazole/Isoxazole Amide Analogues.

Swee Y. Sharp; Chrisostomos Prodromou; Kathy Boxall; Marissa V. Powers; Joanna L. Holmes; Gary Box; Thomas P. Matthews; Kwai-Ming J. Cheung; Andrew Kalusa; Karen Ellis James; Angela Hayes; Anthea Hardcastle; Brian W. Dymock; Paul Brough; Xavier Barril; Julie E. Cansfield; Lisa Wright; Allan Surgenor; Nicolas Foloppe; Roderick E. Hubbard; Wynne Aherne; Laurence H. Pearl; Keith Jones; Edward McDonald; Florence I. Raynaud; Sue Eccles; Martin J. Drysdale; Paul Workman

Although the heat shock protein 90 (HSP90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) shows clinical promise, potential limitations encourage development of alternative chemotypes. We discovered the 3,4-diarylpyrazole resorcinol CCT018159 by high-throughput screening and used structure-based design to generate more potent pyrazole amide analogues, exemplified by VER-49009. Here, we describe the detailed biological properties of VER-49009 and the corresponding isoxazole VER-50589. X-ray crystallography showed a virtually identical HSP90 binding mode. However, the dissociation constant (Kd) of VER-50589 was 4.5 ± 2.2 nmol/L compared with 78.0 ± 10.4 nmol/L for VER-49009, attributable to higher enthalpy for VER-50589 binding. A competitive binding assay gave a lower IC50 of 21 ± 4 nmol/L for VER-50589 compared with 47 ± 9 nmol/L for VER-49009. Cellular uptake of VER-50589 was 4-fold greater than for VER-49009. Mean cellular antiproliferative GI50 values for VER-50589 and VER-49009 for a human cancer cell line panel were 78 ± 15 and 685 ± 119 nmol/L, respectively, showing a 9-fold potency gain for the isoxazole. Unlike 17-AAG, but as with CCT018159, cellular potency of these analogues was independent of NAD(P)H:quinone oxidoreductase 1/DT-diaphorase and P-glycoprotein expression. Consistent with HSP90 inhibition, VER-50589 and VER-49009 caused induction of HSP72 and HSP27 alongside depletion of client proteins, including C-RAF, B-RAF, and survivin, and the protein arginine methyltransferase PRMT5. Both caused cell cycle arrest and apoptosis. Extent and duration of pharmacodynamic changes in an orthotopic human ovarian carcinoma model confirmed the superiority of VER-50589 over VER-49009. VER-50589 accumulated in HCT116 human colon cancer xenografts at levels above the cellular GI50 for 24 h, resulting in 30% growth inhibition. The results indicate the therapeutic potential of the resorcinylic pyrazole/isoxazole amide analogues as HSP90 inhibitors. [Mol Cancer Ther 2007;6(4):1198–211]


Cancer Research | 2007

In vitro Biological Characterization of a Novel, Synthetic Diaryl Pyrazole Resorcinol Class of Heat Shock Protein 90 Inhibitors

Swee Y. Sharp; Kathy Boxall; Martin G. Rowlands; Chrisostomos Prodromou; S. Mark Roe; Alison Maloney; Marissa V. Powers; Paul A. Clarke; Gary Box; Sharon Sanderson; Lisa Patterson; Thomas P. Matthews; Kwai-Ming J. Cheung; Karen Ball; Angela Hayes; Florence I. Raynaud; Richard Marais; Laurence H. Pearl; Sue Eccles; Wynne Aherne; Edward McDonald; Paul Workman

The molecular chaperone heat shock protein 90 (HSP90) has emerged as an exciting molecular target. Derivatives of the natural product geldanamycin, such as 17-allylamino-17-demethoxy-geldanamycin (17-AAG), were the first HSP90 ATPase inhibitors to enter clinical trial. Synthetic small-molecule HSP90 inhibitors have potential advantages. Here, we describe the biological properties of the lead compound of a new class of 3,4-diaryl pyrazole resorcinol HSP90 inhibitor (CCT018159), which we identified by high-throughput screening. CCT018159 inhibited human HSP90beta with comparable potency to 17-AAG and with similar ATP-competitive kinetics. X-ray crystallographic structures of the NH(2)-terminal domain of yeast Hsp90 complexed with CCT018159 or its analogues showed binding properties similar to radicicol. The mean cellular GI(50) value of CCT018159 across a panel of human cancer cell lines, including melanoma, was 5.3 mumol/L. Unlike 17-AAG, the in vitro antitumor activity of the pyrazole resorcinol analogues is independent of NQO1/DT-diaphorase and P-glycoprotein expression. The molecular signature of HSP90 inhibition, comprising increased expression of HSP72 protein and depletion of ERBB2, CDK4, C-RAF, and mutant B-RAF, was shown by Western blotting and quantified by time-resolved fluorescent-Cellisa in human cancer cell lines treated with CCT018159. CCT018159 caused cell cytostasis associated with a G(1) arrest and induced apoptosis. CCT018159 also inhibited key endothelial and tumor cell functions implicated in invasion and angiogenesis. Overall, we have shown that diaryl pyrazole resorcinols exhibited similar cellular properties to 17-AAG with potential advantages (e.g., aqueous solubility, independence from NQO1 and P-glycoprotein). These compounds form the basis for further structure-based optimization to identify more potent inhibitors suitable for clinical development.


Cell Cycle | 2009

Death by chaperone: HSP90, HSP70 or both?

Marissa V. Powers; Paul A. Clarke; Paul Workman

HSP70 family members are highly conserved proteins that function as molecular chaperones. Their principle role is to aid protein folding and promote the correct cellular localisations of their respective substrates. The function of HSP70 isoforms can be exhibited independently or with the HSP90 chaperone system in which HSP70 is important for substrate recruitment. In addition to their chaperone role, HSP70 isoforms promote cell survival by inhibiting apoptosis at multiple points within both the intrinsic and extrinsic cell death pathways. Consistent with this cytoprotective function, increased expression of HSP70 isoforms is commonly associated with the malignant phenotype. We recently reported that dual silencing of the major constitutive (HSC70) and inducible (HSP72) isoforms of HSP70 in cancer cells could phenocopy the effects of a pharmacologic HSP90 inhibitor to induce proteasome-dependent degradation of HSP90 client proteins CRAF, CDK4 and ERBB2. This was accompanied by a G1 cell cycle arrest and extensive apoptosis which was not seen in non-tumorigenic human cell lines. Here we discuss the possible implications of our research for the development of HSP70 family modulators which offer not only the possibility of inhibiting HSP70 activity but also the simultaneous inhibition of HSP90, resulting in extensive tumour-specific apoptosis.


Leukemia | 2010

Targeting heat shock protein 72 enhances Hsp90 inhibitor-induced apoptosis in myeloma.

Emma L. Davenport; Athanasia Zeisig; Lauren I. Aronson; Hannah E. Moore; Sarah L. Hockley; David Gonzalez; Emma M. Smith; Marissa V. Powers; Swee Y. Sharp; Paul Workman; Gareth J. Morgan; Faith E. Davies

Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 2009; 113: 6182–6192. 3 Makishima H, Cazzolli H, Szpurka H, Dunbar A, Tiu R, Huh J et al. Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. J Clin Oncol 2009; 27: 6109–6116. 4 Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009; 360: 2289–2301. 5 Szpurka H, Gondek LP, Mohan SR, Hsi ED, Theil KS, Maciejewski JP. UPD1p indicates the presence of MPL W515L mutation in RARS-T, a mechanism analogous to UPD9p and JAK2 V617F mutation. Leukemia 2009; 23: 610–614. 6 Jasek M, Gondek LP, Bejanyan N, Tiu R, Huh J, Theil KS et al. TP53 mutations in myeloid malignancies are either homozygous or hemizygous due to copy number-neutral loss of heterozygosity or deletion of 17p. Leukemia 2010; 24: 216–219. 7 O’Keefe C, McDevitt MA, Maciejewski JP. Copy neutral loss of heterozygosity: a novel chromosomal lesion in myeloid malignancies. Blood 2010; 115: 2731–2739. 8 Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 2010; 42: 181–185.


Cancer Research | 2016

Second-Generation HSP90 Inhibitor Onalespib Blocks mRNA Splicing of Androgen Receptor Variant 7 in Prostate Cancer Cells

Roberta Ferraldeschi; Jonathan C. Welti; Marissa V. Powers; Wei Yuan; Tomoko Smyth; George Seed; Ruth Riisnaes; Somaieh Hedayat; Hannah Wang; Mateus Crespo; Daniel Nava Rodrigues; Ines Figueiredo; Susana Miranda; Suzanne Carreira; John Lyons; Swee Y. Sharp; Stephen R. Plymate; Gerhardt Attard; Nicola G. Wallis; Paul Workman; Johann S. de Bono

Resistance to available hormone therapies in prostate cancer has been associated with alternative splicing of androgen receptor (AR) and specifically, the expression of truncated and constitutively active AR variant 7 (AR-V7). The transcriptional activity of steroid receptors, including AR, is dependent on interactions with the HSP90 chaperone machinery, but it is unclear whether HSP90 modulates the activity or expression of AR variants. Here, we investigated the effects of HSP90 inhibition on AR-V7 in prostate cancer cell lines endogenously expressing this variant. We demonstrate that AR-V7 and full-length AR (AR-FL) were depleted upon inhibition of HSP90. However, the mechanisms underlying AR-V7 depletion differed from those for AR-FL. Whereas HSP90 inhibition destabilized AR-FL and induced its proteasomal degradation, AR-V7 protein exhibited higher stability than AR-FL and did not require HSP90 chaperone activity. Instead, HSP90 inhibition resulted in the reduction of AR-V7 mRNA levels but did not affect total AR transcript levels, indicating that HSP90 inhibition disrupted AR-V7 splicing. Bioinformatic analyses of transcriptome-wide RNA sequencing data confirmed that the second-generation HSP90 inhibitor onalespib altered the splicing of at least 557 genes in prostate cancer cells, including AR. These findings indicate that the effects of HSP90 inhibition on mRNA splicing may prove beneficial in prostate cancers expressing AR-V7, supporting further clinical investigation of HSP90 inhibitors in malignancies no longer responsive to androgen deprivation. Cancer Res; 76(9); 2731-42. ©2016 AACR.


Oncogene | 2015

Restricting direct interaction of CDC37 with HSP90 does not compromise chaperoning of client proteins

Jennifer R. Smith; E de Billy; Steve Hobbs; Marissa V. Powers; Chrisostomos Prodromou; Laurence H. Pearl; Paul A. Clarke; Paul Workman

The HSP90 molecular chaperone plays a key role in the maturation, stability and activation of its clients, including many oncogenic proteins. Kinases are a substantial and important subset of clients requiring the key cochaperone CDC37. We sought an improved understanding of protein kinase chaperoning by CDC37 in cancer cells. CDC37 overexpression in human colon cancer cells increased CDK4 protein levels, which was negated upon CDC37 knockdown. Overexpressing CDC37 increased CDK4 protein half-life and enhanced binding of HSP90 to CDK4, consistent with CDC37 promoting kinase loading onto chaperone complexes. Against expectation, expression of C-terminus-truncated CDC37 (ΔC-CDC37) that lacks HSP90 binding capacity did not affect kinase client expression or activity; moreover, as with wild-type CDC37 overexpression, it augmented CDK4-HSP90 complex formation. However, although truncation blocked binding to HSP90 in cells, ΔC-CDC37 also showed diminished client protein binding and was relatively unstable. CDC37 mutants with single and double point mutations at residues M164 and L205 showed greatly reduced binding to HSP90, but retained association with client kinases. Surprisingly, these mutants phenocopied wild-type CDC37 overexpression by increasing CDK4-HSP90 association and CDK4 protein levels in cells. Furthermore, expression of the mutants was sufficient to protect kinase clients CDK4, CDK6, CRAF and ERBB2 from depletion induced by silencing endogenous CDC37, indicating that CDC37’s client stabilising function cannot be inactivated by substantially reducing its direct interaction with HSP90. However, CDC37 could not compensate for loss of HSP90 function, showing that CDC37 and HSP90 have their own distinct and non-redundant roles in maintaining kinase clients. Our data substantiate the important function of CDC37 in chaperoning protein kinases. Furthermore, we demonstrate that CDC37 can stabilise kinase clients by a mechanism that is not dependent on a substantial direct interaction between CDC37 and HSP90, but nevertheless requires HSP90 activity. These results have significant implications for therapeutic targeting of CDC37.

Collaboration


Dive into the Marissa V. Powers's collaboration.

Top Co-Authors

Avatar

Paul Workman

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Paul A. Clarke

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Swee Y. Sharp

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Keith Jones

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Angela Hayes

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Emmanuel de Billy

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Florence I. Raynaud

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Martin G. Rowlands

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birgit Wilding

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge