Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marit Øilo is active.

Publication


Featured researches published by Marit Øilo.


Dental Materials | 2013

Fractographic analyses of all-ceramic crowns: A study of 27 clinically fractured crowns

Marit Øilo; Nils Roar Gjerdet

OBJECTIVES The use of all-ceramic restorations has been steadily increasing in the decades since the introduction of high-strength core ceramics as an alternative to metal cores. Even with high-strength ceramic cores, the crowns are susceptible to fractures during clinical function, probably the major concern associated with all-ceramic restorations. The aim of this study was to analyze fracture features of clinically fractured crowns in order to determine crack initiation sites and crack propagation paths. METHODS Fractographic methods were used to analyze 27 all-ceramic full coverage crowns with alumina cores and feldspatic veneering ceramic. The fractured crowns were supplied by dentists in private and public practices with information of type of cement and time in function if available. RESULTS The fractured crowns comprised 13 incisors, 3 premolars and 11 molars. The results revealed that all fractures initiated in the cervical margin of the crowns and usually from the approximal area close to the most coronally placed curvature of the margin. There was no statistically significant association between the cement used and time in function. SIGNIFICANCE Fractography of clinically failed all-ceramic crowns can provide information on the fracture modes and design considerations. The findings are in contrast to fracture modes from in vitro tests. The results suggest that more clinically relevant in vitro test methods to study the durability of ceramic crowns should be developed.


Dental Materials | 2013

Clinically relevant fracture testing of all-ceramic crowns

Marit Øilo; Ketil Kvam; John E. Tibballs; Nils Roar Gjerdet

OBJECTIVES Fracture strength measured in vitro indicates that most all-ceramic crowns should be able to withstand mastication forces. Nevertheless, fractures are one of the major clinical problems with all-ceramic restorations. Furthermore, the fracture mode of all-ceramic crowns observed in clinical use differs from that found in conventional fracture strength tests. The aim of the present study was to develop and investigate a method that simulates clinical fracture behavior in vitro. METHODS 30 crowns with alumina cores were made to fit a cylindrical model with a molar-like preparation design. These crowns were randomly allocated to 3 tests groups (n=10). The crowns in group 1 were cemented to abutment models of epoxy and subsequently fractured by occlusal loading without contact damage. The crowns in group 2 were fractured by cementation with expanding cement. The crowns in group 3 were cemented on an abutment model of epoxy split almost in two and fractured by increasing the diameter of the model in the bucco-lingual direction. The fractured crowns were analyzed by fractographic methods and compared to a reference group of 10 crowns fractured in clinical use. RESULTS The fracture modes of all the in vitro crowns were similar to clinical fracture modes. The fracture modes in group 1 were most closely matched to the clinical fractures. These crowns also fractured at clinically relevant loads. CONCLUSION Laboratory tests that induce a distortion of the abutment model during occlusal loading without occlusal contact damage can simulate clinical fractures of all-ceramic crowns.


European Journal of Oral Sciences | 2014

Fractographic features of glass-ceramic and zirconia-based dental restorations fractured during clinical function

Marit Øilo; Anne Dybdahl Hardang; Amanda Hembre Ulsund; Nils Roar Gjerdet

Fractures during clinical function have been reported as the major concern associated with all-ceramic dental restorations. The aim of this study was to analyze the fracture features of glass-ceramic and zirconia-based restorations fractured during clinical use. Twenty-seven crowns and onlays were supplied by dentists and dental technicians with information about type of cement and time in function, if available. Fourteen lithium disilicate glass-ceramic restorations and 13 zirconia-based restorations were retrieved and analyzed. Fractographic features were examined using optical microscopy to determine crack initiation and crack propagation of the restorations. The material comprised fractured restorations from one canine, 10 incisors, four premolars, and 11 molars. One crown was not categorized because of difficulty in orientation of the fragments. The results revealed that all core and veneer fractures initiated in the cervical margin and usually from the approximal area close to the most coronally placed curvature of the margin. Three cases of occlusal chipping were found. The margin of dental all-ceramic single-tooth restorations was the area of fracture origin. The fracture features were similar for zirconia, glass-ceramic, and alumina single-tooth restorations. Design features seem to be of great importance for fracture initiation.


Journal of The Mechanical Behavior of Biomedical Materials | 2016

Fracture origins in twenty-two dental alumina crowns.

Marit Øilo; George D. Quinn

OBJECTIVES The causes of in vivo fractures of all-ceramic dental crowns are not yet fully understood. The fracture origins often occur in the cervical margin in the approximal area, but the reason for this is unclear. The aim of this study was to evaluate the fracture origin of 22 of clinically-failed alumina crowns. METHODS The fracture surfaces of alumina crowns fractured in vivo were inspected by optical microscopy to evaluate the fracture patterns and identify the cause of fracture. Fracture maps were constructed as needed to interpret the patterns of breakage and to back track to a fracture origin area. A scanning electron microscope (SEM) was used to characterize the fracture origins of the 22 cases where the origin site was available. RESULTS The most common fracture origins were marginal defects either in the alumina core or in the veneer. The defects included thin, chipped, cracked or uneven crown margins and excess veneer on the inside of the crown. Multiple flaws were present along the margins in most specimens, but fracture origins were usually located in the region of the shortest axial wall. A few crowns had pores, contamination, or incomplete sintering that acted as fracture origins. SIGNIFICANCE Production method, handling, design and material insufficiencies influence the fracture of dental ceramic crowns. Machining defects and other margin flaws seem to be the most detrimental factors for alumina crowns. Feather-edge or sharp margins should be avoided. Smooth and moderately thick crown margins would probably dramatically improve the durability.


European Journal of Oral Sciences | 2014

Simulation of clinical fractures for three different all-ceramic crowns

Marit Øilo; Ketil Kvam; Nils Roar Gjerdet

Comparison of fracture strength and fracture modes of different all-ceramic crown systems is not straightforward. Established methods for reliable testing of all-ceramic crowns are not currently available. Published in-vitro tests rarely simulate clinical failure modes and are therefore unsuited to distinguish between the materials. The in-vivo trials usually lack assessment of failure modes. Fractographic analyses show that clinical crowns usually fail from cracks initiating in the cervical margins, whereas in-vitro specimens fail from contact damage at the occlusal loading point. The aim of this study was to compare three all-ceramic systems using a clinically relevant test method that is able to simulate clinical failure modes. Ten incisor crowns of three types of all-ceramic systems were exposed to soft loading until fracture. The initiation and propagation of cracks in these crowns were compared with those of a reference group of crowns that failed during clinical use. All crowns fractured in a manner similar to fracture of the clinical reference crowns. The zirconia crowns fractured at statistically significantly higher loads than alumina and glass-ceramic crowns. Fracture initiation was in the core material, cervically in the approximal areas.


Materials | 2015

Biofilm and Dental Biomaterials

Marit Øilo; Vidar Bakken

All treatment involving the use of biomaterials in the body can affect the host in positive or negative ways. The microbiological environment in the oral cavity is affected by the composition and shape of the biomaterials used for oral restorations. This may impair the patients’ oral health and sometimes their general health as well. Many factors determine the composition of the microbiota and the formation of biofilm in relation to biomaterials such as, surface roughness, surface energy and chemical composition, This paper aims to give an overview of the scientific literature regarding the association between the chemical, mechanical and physical properties of dental biomaterials and oral biofilm formation, with emphasis on current research and future perspectives.


Journal of Endodontics | 2017

Reduction in Fracture Resistance of the Root with Aging

Weishi Yan; Carolina Montoya; Marit Øilo; Alex Ossa; Avina Paranjpe; Hai Zhang; D. Arola

Introduction The incidence of vertical root fracture in endodontically treated teeth increases with patient age. This study evaluated the microstructure, chemical composition, and mechanical properties of radicular dentin as a function of aging. Methods Single‐rooted teeth were obtained from adult donors ranging from age 15 to older than 80 years. Beams were extracted from the middle third of the root and subjected to 4‐point flexure to failure to evaluate strength of dentin in terms of donor age. Based on the strength distribution, the fatigue strength of root tissue from young (≤30 years) and old (≥55 years) donor teeth was evaluated via cyclic flexure loading. The microstructure and chemical composition of radicular dentin from the 2 groups were evaluated as a function of distance from the root apex using microscopy and Raman spectroscopy, respectively. Results The strength decreased with age by approximately 25 MPa per decade, which resulted in a significant difference (P ≤ .0001) between the young (199 ± 36 MPa) and old (122 ± 11 MPa) groups. There was also a significant difference (P ≤ .0001) in fatigue strength between the young and old age groups. Both the mineral‐to‐collagen ratio and degree of cross‐linking increased with age, with the largest changes identified in the apical and middle thirds, respectively. Conclusions There is a reduction in the damage tolerance of radicular dentin with increasing age. This degradation appears to result from changes in the microstructure, corresponding chemical composition, and increase in collagen cross‐linking with age, and is most severe near the root apex. HighlightsWe evaluated the strength and fatigue properties of root dentin in terms of patient age.The strength and fatigue crack growth resistance of the old dentin was significantly lower.The microstructure, mineral content, and collagen cross‐linking were also age dependent.


European Journal of Oral Sciences | 2009

Qualitative and quantitative fracture analyses of high‐strength ceramics

Marit Øilo; Helene Meyer Tvinnereim; Nils Roar Gjerdet

The aims of this study were to assess the applicability and repeatability of qualitative and quantitative analyses of the fracture patterns of four different high-strength ceramics. Ten bar-shaped specimens of four high-strength ceramics with different material composition and fabrication methods had been fractured by three-point bending in water (n = 40). Commonly used fractographic patterns for brittle materials, such as mirror and mist, were used to characterize and quantify the fractured surfaces of these specimens. The analyses were performed twice, on separate occasions, by the same operator. Assessment of the association between fractographic patterns and fracture stress was carried out, and repeatability assessments of the measurements were performed. The fracture initiator site and the common fractographic markers surrounding this site were found in all specimens. Statistically significant correlations were found between certain fracture patterns and stress at fracture. The repeatability of the measurements of the different fractographic patterns varied among the materials. Fracture analyses seem applicable as a tool to determine the fracture initiation site and to estimate the force vectors involved in the fracture of dental high-strength ceramics.


Dental Materials | 2017

Monolithic zirconia dental crowns. Internal fit, margin quality, fracture mode and load at fracture

Christian Schriwer; Anneli Skjold; Nils Roar Gjerdet; Marit Øilo

OBJECTIVE Dental all-ceramic restorations of zirconia, with and without an aesthetic veneering layer, have become a viable alternative to conventional metal-ceramic restorations. The aim of this study was to evaluate whether factors of the production methods or the material compositions affect load at fracture, fracture modes, internal fit or crown margins of monolithic zirconia crowns. METHODS Sixty crowns made from six different commercially available dental zirconias were produced to a model tooth with a shallow circumferential chamfer preparation. Internal fit was assessed by the replica method. The crown margin quality was assessed by light microscopy on an ordinal scale. The cemented crowns were loaded centrally in the occlusal fossa with a horizontal steel cylinder with a diameter of 13mm at 0.5mm/min until fracture. Fractographic analysis was performed on the fractured crowns. RESULTS There were statistically significant differences among the groups regarding crown margins, internal fit and load at fracture (p<0.05, Kruskall Wallis). Fracture analyses revealed that all fractures started cervically and propagated to the occlusal surface similar to clinically observed fractures. There was statistically significant correlation between margin quality and load at fracture (Spearmans rank correlation, p<0,05). SIGNIFICANCE Production method and material composition of monolithic zirconia crowns affect internal fit, crown margin quality and the load at fracture. The hard-machined Y-TZP zirconia crowns had the best margin quality and the highest load at fracture. Reduction of margin flaws will improve fracture strength of monolithic zirconia crowns and thereby increase clinical success.


Dental Materials | 2018

Fractographic analyses of failed one-piece zirconia implant restorations

Marit Øilo; D. Arola

BACKGROUND Promising results of initial clinical trials with yttria-stabilized zirconia have led to more extensive use of zirconia in dental implant superstructures. The applications have extended to abutments and complex individually designed crown-abutment one-piece structures. Little is known about their clinical success and the primary cause of failures. PURPOSE The aim of this study was to identify the cause of fracture of retrieved implant-retained one-piece prostheses that failed during clinical use. METHODS Nine fractured restorations were analyzed with fractographic methods and their fracture origins were identified. RESULTS All but two of the fractures originated in an area of tight contact between the implant or titanium screw and the abutment base. Results of the evaluation showed that zirconia-based implant restorations with very thin walls in the region connecting the prosthesis to the implant are vulnerable to damage from the screw retaining process and fracture from non-axial loads. Two restorations failed due to veneer fractures. SIGNIFICANCE The findings suggest that large crowns on narrow implants or implants with internal fixation should preferably not be made with zirconia abutments, or that a new design approach should be considered.

Collaboration


Dive into the Marit Øilo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Arola

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George D. Quinn

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge