Maritha J. Kotze
Stellenbosch University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maritha J. Kotze.
Science | 2009
Sarah A. Tishkoff; Floyd A. Reed; Françoise R. Friedlaender; Christopher Ehret; Alessia Ranciaro; Alain Froment; Jibril Hirbo; Agnes A. Awomoyi; Jean-Marie Bodo; Ogobara K. Doumbo; Muntaser E. Ibrahim; Abdalla T. Juma; Maritha J. Kotze; Godfrey Lema; Jason H. Moore; Holly M. Mortensen; Thomas B. Nyambo; Sabah A. Omar; Kweli Powell; Gideon S. Pretorius; Michael W. Smith; Mahamadou A. Thera; Charles Wambebe; James L. Weber; Scott M. Williams
African Origins The modern human originated in Africa and subsequently spread across the globe. However, the genetic relationships among the diverse populations on the African continent have been unclear. Tishkoff et al. (p. 1035; see the cover, published online 30 April) provide a detailed genetic analysis of most major groups of African populations. The findings suggest that Africans represent 14 ancestral populations. Populations tend to be of mixed ancestry which documents historical migrations. The data mainly support but sometimes challenge proposed relationships between groups of self-identified ethnicity previously hypothesized on the basis of linguistic studies. The authors also examined populations of African Americans and individuals of mixed ancestry from Cape Town, documenting the variation and origins of admixture within these groups. A genetic study illuminates population history, as well as the relationships among and the origin of major language families. Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We identified 14 ancestral population clusters in Africa that correlate with self-described ethnicity and shared cultural and/or linguistic properties. We observed high levels of mixed ancestry in most populations, reflecting historical migration events across the continent. Our data also provide evidence for shared ancestry among geographically diverse hunter-gatherer populations (Khoesan speakers and Pygmies). The ancestry of African Americans is predominantly from Niger-Kordofanian (~71%), European (~13%), and other African (~8%) populations, although admixture levels varied considerably among individuals. This study helps tease apart the complex evolutionary history of Africans and African Americans, aiding both anthropological and genetic epidemiologic studies.
Arteriosclerosis, Thrombosis, and Vascular Biology | 1993
Maritha J. Kotze; W.J.S. de Villiers; K Steyn; J A Kriek; A D Marais; E. Langenhoven; J S Herbert; J F Graadt Van Roggen; D.R. van der Westhuyzen; G A Coetzee
Two common founder-related gene mutations that affect the low-density lipoprotein receptor (LDLR) are responsible for approximately 80% of familial hypercholesterolemia (FH) in South African Afrikaners. The FH Afrikaner-1 (FH1) mutation (Asp206-->Glu) in exon 4 results in defective receptors with approximately 20% of normal activity, whereas the FH Afrikaner-2 (FH2) mutation (Val408-->Met) in exon 9 completely abolishes LDLR activity (< 2% normal activity). We analyzed the contribution of these mutations and other factors on the variation of hypercholesterolemia and clinical features in Afrikaner FH heterozygotes. The type of FH mutation, plasma triglyceride levels, and age of patients each contributed significantly to the variation in hypercholesterolemia, whereas smoking status, high-density lipoprotein cholesterol levels, and gender had no influence. Although all FH heterozygotes had frank hypercholesterolemia, patients with the FH1 mutation had significantly lower cholesterol levels than those with the FH2 mutation. FH1 heterozygotes also tended to have milder clinical features. The differences between the two FH groups could not be explained by a difference in the common apolipoprotein E variants. This study demonstrates that mutational heterogeneity in the LDLR gene influences the phenotypic expression of heterozygous FH.
Annals of Human Genetics | 1991
Maritha J. Kotze; E Langenhoven; Louise Warnich; L. du Plessis; A.E. Retief
Three different point mutations were recently identified in South African familial hypercholesterolaemics. These mutations result in the modification of recognition sites of specific restriction endonucleases. This study describes rapid methods for presymptomatic detection of these defects based on restriction enzyme analysis or allele‐specific hybridization of enzymatically amplified genomic DNA. These methods were used to determine the frequencies of the three known low‐density lipoprotein (LDL) receptor gene mutations in 138 chromosomes of Afrikaner FH patients. It has been shown that a common mutation at the 3′ end of exon 4 (base 681) of the LDL receptor gene is present in about 70% of alleles, while the mutations in exons 9 (base 1285) and 4 (base 523) of the gene are present in about 20 and 10% respectively of the genes studied. These mutations were found in approximately 95% of Afrikaner familial hypercholesterolaemic patients studied, indicating at least three founder members for the disease in this population of South Arica.
Nucleic Acids Research | 1998
Mathilde Varret; Jean-Pierre Rabès; Rochelle Thiart; Maritha J. Kotze; Heike Baron; Ana Cenarro; Olivier S. Descamps; Margit Ebhardt; Jean-Claude Hondelijn; Gert M. Kostner; Yasuko Miyake; Miguel Pocovi; Hartmut Schmidt; Helena Schmidt; Herbert Schuster; Manfred Stuhrmann; Taku Yamamura; Claudine Junien; Christophe Béroud; Catherine Boileau
Mutations in the LDL receptor gene (LDLR) cause familial hypercholesterolemia (FH), a common autosomal dominant disorder. The LDLR database is a computerized tool that has been developed to provide tools to analyse the numerous mutations that have been identified in the LDLR gene. The second version of the LDLR database contains 140 new entries and the software has been modified to accommodate four new routines. The analysis of the updated data (350 mutations) gives the following informations: (i) 63% of the mutations are missense, and only 20% occur in CpG dinucleotides; (ii) although the mutations are widely distributed throughout the gene, there is an excess of mutations in exons 4 and 9, and a deficit in exons 13 and 15; (iii) the analysis of the distribution of mutations located within the ligand-binding domain shows that 74% of the mutations in this domain affect a conserved amino-acid, and that they are mostly confined in the C-terminal region of the repeats. Conversely, the same analysis in the EGF-like domain shows that 64% of the mutations in this domain affect a non-conserved amino-acid, and, that they are mostly confined in the N-terminal half of the repeats. The database is now accessible on the World Wide Web at http://www.umd.necker.fr
American Journal of Human Genetics | 2014
Alessia Ranciaro; Michael C. Campbell; Jibril Hirbo; Wen-Ya Ko; Alain Froment; Paolo Anagnostou; Maritha J. Kotze; Muntaser E. Ibrahim; Thomas B. Nyambo; Sabah A. Omar; Sarah A. Tishkoff
In humans, the ability to digest lactose, the sugar in milk, declines after weaning because of decreasing levels of the enzyme lactase-phlorizin hydrolase, encoded by LCT. However, some individuals maintain high enzyme amounts and are able to digest lactose into adulthood (i.e., they have the lactase-persistence [LP] trait). It is thought that selection has played a major role in maintaining this genetically determined phenotypic trait in different human populations that practice pastoralism. To identify variants associated with the LP trait and to study its evolutionary history in Africa, we sequenced MCM6 introns 9 and 13 and ~2 kb of the LCT promoter region in 819 individuals from 63 African populations and in 154 non-Africans from nine populations. We also genotyped four microsatellites in an ~198 kb region in a subset of 252 individuals to reconstruct the origin and spread of LP-associated variants in Africa. Additionally, we examined the association between LP and genetic variability at candidate regulatory regions in 513 individuals from eastern Africa. Our analyses confirmed the association between the LP trait and three common variants in intron 13 (C-14010, G-13907, and G-13915). Furthermore, we identified two additional LP-associated SNPs in intron 13 and the promoter region (G-12962 and T-956, respectively). Using neutrality tests based on the allele frequency spectrum and long-range linkage disequilibrium, we detected strong signatures of recent positive selection in eastern African populations and the Fulani from central Africa. In addition, haplotype analysis supported an eastern African origin of the C-14010 LP-associated mutation in southern Africa.
Atherosclerosis | 2000
Frederick J. Raal; Anuradha S. Pappu; D. Roger Illingworth; Gillian J. Pilcher; A. David Marais; Jean C. Firth; Maritha J. Kotze; Therese Heinonen; Donald M. Black
Patients with homozygous familial hypercholesterolaemia (HoFH) have markedly elevated low density lipoprotein (LDL) cholesterol levels that are refractory to standard doses of lipid-lowering drug therapy. In the present study we evaluated the effect of atorvastatin on steady state concentrations of plasma lipids and mevalonic acid (MVA), as well as on 24-h urinary excretion of MVA in patients with well characterized HoFH. Thirty-five HoFH patients (18 males; 17 females) received 40 mg and then 80 mg atorvastatin/day. The dose of atorvastatin was increased further to 120 mg/day in 20 subjects and to 160 mg/day in 13 subjects who had not achieved LDL cholesterol goal, or in whom the dose of atorvastatin had not exceeded 2.5 mg/kg body wt per day. LDL cholesterol levels were reduced by 17% at the 40 mg/day and by 28% at the 80 mg/day dosage (P<0.01). Reduction in LDL cholesterol in the five receptor negative patients was similar to that achieved in the 30 patients with residual LDL receptor activity. Plasma MVA and 24-h urinary excretion of MVA, as markers of in vivo cholesterol synthesis, were elevated at baseline and decreased markedly with treatment. Urinary MVA excretion decreased by 57% at the 40 mg/day dose and by 63% at the 80 mg/day dosage (P<0. 01). There was a correlation between reduction in LDL cholesterol and reduction in urinary MVA excretion; those patients with the highest basal levels of MVA excretion and thus the highest rates of cholesterol synthesis having the greatest reduction in LDL cholesterol (r=0.38; P=0.02). Increasing the dose of atorvastatin to 120 and 160 mg/day did not result in any further reduction in LDL cholesterol or urinary MVA excretion suggesting a plateau effect with no further inhibition of cholesterol synthesis at doses of atorvastatin greater than 80 mg/day.
Journal of Medical Genetics | 1997
Jayne Leggo; A Dalton; P J Morrison; Alan Dodge; M Connarty; Maritha J. Kotze; David C. Rubinsztein
Accurate clinical diagnosis of the spinocerebellar ataxias (SCAs) can be difficult because of overlap in phenotype with other disorders and variation in clinical manifestations. Six SCA loci have been mapped and four disease causing genes identified, in addition to the causative gene for Friedreichs ataxia (FA). All of the identified mutations are expansions of trinucleotide repeat tracts. The SCA2 and SCA6 genes were published recently. The extent of the normal CAG size ranges at these loci and the relative frequencies of the known causes of SCA in the UK are not known. This study first investigated the normal size ranges of the SCA2 and SCA6 loci by genotyping control populations of West African and South African subjects, since African populations generally show the greatest allelic diversity. We found one allele larger than the previously determined normal range for SCA2, and our results at the SCA6 locus agreed with the previously reported normal range. The second component of the study assessed the relative frequencies of the SCA1, 2, 3, and 6, DRPLA, and FA trinucleotide repeat mutations in 146 patients presenting with SCA-like symptoms referred to genetic diagnostic laboratories in the UK. We detected mutations in 14% of patients referred with a diagnosis of autosomal dominant SCA, and in 15% of patients referred with spinocerebellar ataxia where we did not have sufficient family history data available to allow categorisation as familial or sporadic cases. Friedreichs ataxia accounted for 3% of the latter category of cases in our sample, but the most common causes of SCA were SCA2 and SCA6.
South African Medical Journal | 2011
Frederik Cornelis Kruger; Daniels C; Martin Kidd; Gillaum Swart; Karen Brundyn; Christo van Rensburg; Maritha J. Kotze
BACKGROUND Non-alcoholic steatohepatitis (NASH) can lead to cirrhosis and hepatocellular carcinoma. The NASH fibrosis score (NFS) has proven to be a reliable, non-invasive marker for prediction of advanced fibrosis. Aspartate aminotransferase-to-platelet ratio index (APRI) is a simpler calculation than NFS, but has never been studied in patients with non-alcoholic fatty liver disease (NAFLD). AIM To validate APRI as a non-invasive marker of liver fibrosis in subjects with NAFLD to be used in clinical practice. DESIGN/METHODS The cohort consisted of 111 patients with histological diagnoses of NAFLD. The biopsy samples were staged and graded according to the NASH clinical research network (CRN) criteria. These were grouped into fatty liver disease (FLD), NASH, no/mild fibrosis, and advanced fibrosis. The sensitivity and specificity of APRI were compared with NFS and aspartate aminotransferase-to-alanine aminotransferase (AST/ALT) ratio. RESULTS The APRI was significantly higher in the advanced fibrosis group. The area under receiver operating characteristic (ROC) curve for APRI was 0.85 with an optimal cut-off of 0.98, giving a sensitivity of 75% and a specificity of 86%. The NFS was significantly lower in the advanced fibrosis group. The ROC for NFS gave an area under curve (AUC) of 0.77 and a cut-off value of -1.3 with a sensitivity of 76% and specificity of 69%. The positive predictive value for APRI was 54% as opposed to 34% for NFS. The negative predictive value was 93% for APRI and 94% for NFS. CONCLUSION APRI compared favourably to NFS and was superior to AST/ALT for the prediction of advanced fibrosis. We therefore propose the use of APRI in a new algorithm for the detection of advanced fibrosis.
Genetic Testing | 2000
Christian Oberkanins; Anne Moritz; J. Nico P. de Villiers; Maritha J. Kotze; Fritz Kury
Hereditary hemochromatosis (HH) is a very common autosomal recessive disorder of iron metabolism and frequently associated with mutations in the HFE gene. Molecular genetic testing for HFE mutations is considered valuable for carrier identification, as well as for early diagnosis of the disease, allowing simple treatment by phlebotomy and normal survival of patients. We have developed a reverse-hybridization assay for the routine diagnosis of eight previously described and one novel (E168Q) HFE point mutations. The test is based on multiplex DNA amplification and ready-to-use membrane teststrips, which contain oligonucleotide probes for each wild-type and mutated allele immobilized as an array of parallel lines. The procedure is rapid and accessible to automation on commercially available equipment, and by adding new probes the teststrip can easily be adapted to cover an increasing number of mutations.
Human Genetics | 1996
K. Steyn; Y. P. Goldberg; Maritha J. Kotze; M. Steyn; A. S. P. Swanepoel; J. M. Fourie; G A Coetzee; D R van der Westhuyzen
Abstract We have determined the prevalence of familial hypercholesterolaemia (FH) in a rural Afrikaner community by means of direct DNA screening for three founder-related Afrikaner low density lipoprotein (LDL) receptor gene mutations. A random sample of 1612 persons, aged 15–64 years, was selected as a subsample of 4583 subjects from an Afrikaner community living in the south-western Cape, South Africa. Participants who had a total serum cholesterol (TC) in the high TC category as defined in the consensus recommendations by the Southern African Heart Foundation, were screened for three founder-related LDL receptor gene mutations, causing FH in 90% of Afrikaners. Of the subsample, 201 participants (12.5%) had TC levels above the 80th percentile. In this group the combined prevalence of the three common Afrikaner LDL receptor gene defects (D206E, FH Afrikaner-1; V408M, FH Afrikaner-2; D154N, FH Afrikaner-3) was calculated as 1 : 83. When taking into account the reported background prevalence of other FH gene defects of 1 : 500 in this community, their overall prevalence of FH was estimated to be 1 : 72. The significant differences found between the FH patients and other high risk patients with raised cholesterol levels were higher TC and LDL cholesterol levels and lower high density lipoprotein cholesterol levels in FH patients. The treatment status of the molecularly identified FH patients and other hypercholesterolaemic persons suggests that this condition is inadequately diagnosed and poorly managed in this study population. An extrapolation to the entire South African population suggests that there are about 112 000 FH patients in the country who are underdiagnosed as a group and therefore not receiving the care that would help to reduce the burden of FH-associated ischaemic heart disease in South Africa.