Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maritza J. Romero is active.

Publication


Featured researches published by Maritza J. Romero.


British Journal of Pharmacology | 2012

Oxidative species increase arginase activity in endothelial cells through the RhoA/Rho kinase pathway

Surabhi Chandra; Maritza J. Romero; Alia Shatanawi; Am Alkilany; Ruth B. Caldwell; Robert W. Caldwell

BACKGROUND AND PURPOSE NO produced by endothelial NOS is needed for normal vascular function. During diabetes, aging and hypertension, elevated levels of arginase can compete with NOS for available l‐arginine, reducing NO and increasing superoxide (O2.−) production via NOS uncoupling. Elevated O2.− combines with NO to form peroxynitrite (ONOO‐), further reducing NO. Oxidative species increase arginase activity, but the mechanism(s) involved are not known. Our study determined the mechanism involved in peroxynitrite and hydrogen peroxide‐induced enhancement in endothelial arginase activity. We hypothesized that oxidative species increase arginase activity through PKC‐activated RhoA/Rho kinase (ROCK) pathway.


American Journal of Pathology | 2009

Arginase Activity Mediates Retinal Inflammation in Endotoxin-Induced Uveitis

Wenbo Zhang; Babak Baban; Modesto Rojas; Sohrab Tofigh; Suvika Virmani; Chintan Patel; M. Ali Behzadian; Maritza J. Romero; Robert W. Caldwell; Ruth B. Caldwell

Arginase has been reported to reduce nitric oxide bioavailability in cardiovascular disease. However, its specific role in retinopathy has not been studied. In this study, we assessed the role of arginase in a mouse model of endotoxin-induced uveitis induced by lipopolysaccharide (LPS) treatment. Measurement of arginase expression and activity in the retina revealed a significant increase in arginase activity that was associated with increases in both mRNA and protein levels of arginase (Arg)1 but not Arg2. Immunofluorescence and flow cytometry confirmed this increase in Arg1, which was localized to glia and microglia. Arg1 expression and activity were also increased in cultured Muller cells and microglia treated with LPS. To test whether arginase has a role in the development of retinal inflammation, experiments were performed in mice deficient in one copy of the Arg1 gene and both copies of the Arg2 gene or in mice treated with a selective arginase inhibitor. These studies showed that LPS-induced increases in inflammatory protein production, leukostasis, retinal damage, signs of anterior uveitis, and uncoupling of nitric oxide synthase were blocked by either knockdown or inhibition of arginase. Furthermore, the LPS-induced increase in Arg1 expression was abrogated by blocking NADPH oxidase. In conclusion, these studies suggest that LPS-induced retinal inflammation in endotoxin-induced uveitis is mediated by NADPH oxidase-dependent increases in arginase activity.


The Journal of Sexual Medicine | 2010

p38 Mitogen-Activated Protein Kinase (MAPK) Increases Arginase Activity and Contributes to Endothelial Dysfunction in Corpora Cavernosa from Angiotensin-II-Treated Mice

Haroldo A. Toque; Maritza J. Romero; Rita C. Tostes; Alia Shatanawi; Surabhi Chandra; Zidonia N. Carneiro; Edward W. Inscho; Robert Clinton Webb; Ruth B. Caldwell; Robert W. Caldwell

INTRODUCTION Angiotensin II (AngII) activates p38 mitogen-activated protein kinase (MAPK) and elevates arginase activity in endothelial cells. Upregulation of arginase activity has been implicated in endothelial dysfunction by reducing nitric oxide (NO) bioavailability. However, signaling pathways activated by AngII in the penis are largely unknown. AIM We hypothesized that activation of p38 MAPK increases arginase activity and thus impairs penile vascular function in AngII-treated mice. METHODS Male C57BL/6 mice were implanted with osmotic minipumps containing saline or AngII (42 µg/kg/h) for 14 days and cotreated with p38 MAPK inhibitor, SB 203580 (5 µg/kg/day), beginning 2 days before minipump implantation. Systolic blood pressure (SBP) was measured. Corpus cavernosum (CC) tissue was used for vascular functional studies and protein expression levels of p38 MAPK, arginase and constitutive NO synthase (NOS), and arginase activity. MAIN OUTCOME MEASURES Arginase expression and activity; expression of phospho-p38 MAPK, endothelial NOS (eNOS) and neuronal NOS proteins; endothelium-dependent and nitrergic nerve-mediated relaxations were determined in CC from control and AngII-infused mice. RESULTS AngII increased SBP (22%) and increased CC arginase activity and expression (∼twofold), and phosphorylated P38 MAPK levels (30%) over control. Treatment with SB 203580 prevented these effects. Endothelium-dependent NO-mediated relaxation to acetylcholine was significantly reduced by AngII and this effect was prevented by SB 203580 (P < 0.01). AngII (2 weeks) did not alter nitrergic function. However, SB 203580 significantly increased nitrergic relaxation in both control and AngII tissue at lower frequencies. Maximum contractile responses for phenylephrine and electrical field stimulation were increased by AngII (56% and 171%, respectively) and attenuated by SB 203580 treatment. AngII treatment also decreased eNOS phosphorylation at Ser-1177 compared to control. Treatment with SB 203580 prevented all these changes. CONCLUSION p38 MAPK inhibition corrects penile arginase activity and protects against erectile dysfunction caused by AngII.


Journal of cardiovascular disease research | 2010

Novel mechanisms of endothelial dysfunction in diabetes

Guang Yang; Rudolf Lucas; Ruth B. Caldwell; Lin Yao; Maritza J. Romero; W Robert Caldwell.

Diabetes mellitus is a major risk factor for cardiovascular morbidity and mortality. This condition increases the risk of developing coronary, cerebrovascular, and peripheral arterial disease fourfold. Endothelial dysfunction is a major contributor to the pathogenesis of vascular disease in diabetes mellitus patients and has recently received increased attention. In this review article, some recent developments that could improve the knowledge of diabetes-induced endothelial dysfunction are discussed.


Brain Research Bulletin | 2010

Vascular dysfunction in retinopathy—An emerging role for arginase

Ruth B. Caldwell; Wenbo Zhang; Maritza J. Romero; R. William Caldwell

Retinal neovascularization is a leading cause of visual disability. Retinal diseases involving neovascularization all follow the same progression, beginning with vascular inflammatory reactions and injury of the vascular endothelium and ending with neovascularization, fibrosis and retinal detachment. Understanding the mechanisms underlying this process is critical for its prevention and treatment. Research using retinopathy models has revealed that the NOX2 NADPH oxidase has a key role in inducing production of reactive oxygen species and angiogenic cytokines and causing vascular inflammatory reactions and neovascularization. This prospective review addresses the potential role of the urea/ornithine pathway enzyme arginase in this process. Studies of peripheral vessels isolated from diabetic animals have shown that increased arginase activity causes vascular endothelial cell dysfunction by decreasing availability of l-arginine to endothelial cell nitric oxide synthase which decreases nitric oxide bioavailability and increases oxidative stress. Increasing arginase activity also increases formation of polyamines and proline, which can induce cell growth and fibrosis. Studies in models of retinopathy show that increases in oxidative stress and signs of vascular inflammation are correlated with increases in arginase activity and arginase 1 expression and that decreasing arginase expression or inhibiting its activity blocks these effects. Furthermore, the induction of arginase during retinopathy is blocked by knocking out NOX2 or inhibiting NADPH oxidase activity. These observations suggest that NADPH oxidase-induced activation of the arginase pathway has a key role in causing retinal vascular dysfunction during retinopathy. Limiting the actions of arginase could provide a new strategy for treating this potentially blinding condition.


Frontiers in Immunology | 2013

Arginase 1 Mediates Increased Blood Pressure and Contributes to Vascular Endothelial Dysfunction in Deoxycorticosterone Acetate-Salt Hypertension

Haroldo A. Toque; Kenia Pedrosa Nunes; Modesto Rojas; Anil Bhatta; Lin Yao; Zhimin Xu; Maritza J. Romero; R. Clinton Webb; Ruth B. Caldwell; R. William Caldwell

Enhanced arginase (ARG) activity has been identified as a factor that reduces nitric oxide production and impairs endothelial function in vascular pathologies. Using a gene deletion model, we investigated involvement of arginase isoforms arginase 1 and 2 (ARG1 and ARG2) in hypertension and endothelial dysfunction in a mineralocorticoid-salt mouse model. Hypertension was induced in wild type (WT), partial ARG1+/− knockout (KO), and complete ARG2−/− KO mice by uninephrectomy and deoxycorticosterone acetate (DOCA)-salt treatment for 6-weeks. (Control uninephrectomized mice drank tap water.) After 2 weeks of DOCA-salt treatment, systolic blood pressure (SBP) was increased by ∼15 mmHg in all mouse genotypes. SBP continued to rise in DOCA-salt WT and ARG2−/− mice to ∼130 mmHg at 5–6 weeks, whereas in ARG1+/− mice SBP waned toward control levels by 6 weeks (109 ± 4 vs. 101 ± 3 mmHg, respectively). DOCA-salt treatment in WT mice increased vascular ARG activity (aorta by 1.5-fold; mesenteric artery (MA) by 2.6-fold and protein levels of ARG1 (aorta: 1.49-fold and MA: 1.73-fold) vs. WT Sham tissues. ARG2 protein increased in WT-DOCA MA (by 2.15-fold) but not in aorta compared to those of WT Sham tissues. Maximum endothelium-dependent vasorelaxation to acetylcholine was significantly reduced in DOCA-salt WT mice and largely or partially maintained in DOCA ARG1+/− and ARG2−/− mice vs. their Sham controls. DOCA-salt augmented contractile responses to phenylephrine in aorta of all mouse genotypes. Additionally, treatment of aorta or MA from WT-DOCA mice with arginase inhibitor (100 μM) improved endothelium-mediated vasorelaxation. DOCA-salt-induced coronary perivascular fibrosis (increased by 2.1-fold) in WT was prevented in ARG1+/− and reduced in ARG2−/− mice. In summary, ARG is involved in murine DOCA-salt-induced impairment of vascular function and hypertension and may represent a novel target for antihypertensive therapy.


Frontiers in Immunology | 2013

L-citrulline protects from kidney damage in type 1 diabetic mice

Maritza J. Romero; Lin Yao; Supriya Sridhar; Anil Bhatta; Huijuan Dou; Ganesan Ramesh; Michael W. Brands; David M. Pollock; Ruth B. Caldwell; Stephen D. Cederbaum; C. Alvin Head; Zsolt Bagi; Rudolf Lucas; Robert W. Caldwell

Rationale: Diabetic nephropathy (DN) is a major cause of end-stage renal disease, associated with endothelial dysfunction. Chronic supplementation of l-arginine (l-arg), the substrate for endothelial nitric oxide synthase (eNOS), failed to improve vascular function. l-Citrulline (l-cit) supplementation not only increases l-arg synthesis, but also inhibits cytosolic arginase I, a competitor of eNOS for the use of l-arg, in the vasculature. Aims: To investigate whether l-cit treatment reduces DN in streptozotocin (STZ)-induced type 1 diabetes (T1D) in mice and rats and to study its effects on arginase II (ArgII) function, the main renal isoform. Methods: STZ-C57BL6 mice received l-cit or vehicle supplemented in the drinking water. For comparative analysis, diabetic ArgII knock out mice and l-cit-treated STZ-rats were evaluated. Results: l-Citrulline exerted protective effects in kidneys of STZ-rats, and markedly reduced urinary albumin excretion, tubulo-interstitial fibrosis, and kidney hypertrophy, observed in untreated diabetic mice. Intriguingly, l-cit treatment was accompanied by a sustained elevation of tubular ArgII at 16 weeks and significantly enhanced plasma levels of the anti-inflammatory cytokine IL-10. Diabetic ArgII knock out mice showed greater blood urea nitrogen levels, hypertrophy, and dilated tubules than diabetic wild type (WT) mice. Despite a marked reduction in collagen deposition in ArgII knock out mice, their albuminuria was not significantly different from diabetic WT animals. l-Cit also restored nitric oxide/reactive oxygen species balance and barrier function in high glucose-treated monolayers of human glomerular endothelial cells. Moreover, l-cit also has the ability to establish an anti-inflammatory profile, characterized by increased IL-10 and reduced IL-1β and IL-12(p70) generation in the human proximal tubular cells. Conclusion: l-Citrulline supplementation established an anti-inflammatory profile and significantly preserved the nephron function during T1D.


Frontiers in Immunology | 2013

Arginase 1: An Unexpected Mediator of Pulmonary Capillary Barrier Dysfunction in Models of Acute Lung Injury

Rudolf Lucas; Istvan Czikora; Supriya Sridhar; Evgeny A. Zemskov; Aluya Oseghale; Sebastian Circo; Stephen D. Cederbaum; Trinad Chakraborty; David Fulton; Robert W. Caldwell; Maritza J. Romero

The integrity of epithelial and endothelial barriers in the lower airspaces of the lungs has to be tightly regulated, in order to prevent leakage and to assure efficient gas exchange between the alveoli and capillaries. Both G− and G+ bacterial toxins, such as lipopolysaccharide and pneumolysin, respectively, can be released in high concentrations within the pulmonary compartments upon antibiotic treatment of patients suffering from acute respiratory distress syndrome (ARDS) or severe pneumonia. These toxins are able to impair endothelial barrier function, either directly, or indirectly, by induction of pro-inflammatory mediators and neutrophil sequestration. Toxin-induced endothelial hyperpermeability can involve myosin light chain phosphorylation and/or microtubule rearrangement. Endothelial nitric oxide synthase (eNOS) was proposed to be a guardian of basal barrier function, since eNOS knock-out mice display an impaired expression of inter-endothelial junction proteins and as such an increased vascular permeability, as compared to wild type mice. The enzyme arginase, the activity of which can be regulated by the redox status of the cell, exists in two isoforms – arginase 1 (cytosolic) and arginase 2 (mitochondrial) – both of which can be expressed in lung microvascular endothelial cells. Upon activation, arginase competes with eNOS for the substrate l-arginine, as such impairing eNOS-dependent NO generation and promoting reactive oxygen species generation by the enzyme. This mini-review will discuss recent findings regarding the interaction between bacterial toxins and arginase during acute lung injury and will as such address the role of arginase in bacterial toxin-induced pulmonary endothelial barrier dysfunction.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Role of growth hormone-releasing hormone in dyslipidemia associated with experimental type 1 diabetes

Maritza J. Romero; Rudolf Lucas; Huijuan Dou; Supriya Sridhar; Istvan Czikora; Eby M. Mosieri; Ferenc G. Rick; Norman L. Block; Subbaramiah Sridhar; David Fulton; Neal L. Weintraub; Zsolt Bagi; Andrew V. Schally

Significance Growth hormone-releasing hormone (GHRH) antagonist MIA-602 reduces hyperlipidemia in rats with type 1 diabetes (T1D). Elevated triglyceride-rich lipoprotein (TRL) and LDL levels correlate with renal and cardiovascular disease in T1D. Activity of GLP-1 in the intestine to lower TRL, glucagon, and postprandial glucose levels is impaired in T1D subjects. Expression of GHRH receptor was upregulated in the small intestine, involved in chylomicron synthesis in T1D rats. MIA-602 restored GLP-1 actions on hyperlipidemia and hyperglucagonemia in T1D rats and reduced generation of Apo-B48 induced by oleic acid in intestinal epithelial cells in vitro in a GLP-1–dependent manner. MIA-602 significantly improved proteinuria and vasorelaxation capacity in T1D rats. These findings unravel a previously unidentified pathway in T1D mediated by GHRH associated with impaired GLP-1 signaling and hyperlipidemia. Dyslipidemia associated with triglyceride-rich lipoproteins (TRLs) represents an important residual risk factor for cardiovascular and chronic kidney disease in patients with type 1 diabetes (T1D). Levels of growth hormone (GH) are elevated in T1D, which aggravates both hyperglycemia and dyslipidemia. The hypothalamic growth hormone-releasing hormone (GHRH) regulates the release of GH by the pituitary but also exerts separate actions on peripheral GHRH receptors, the functional role of which remains elusive in T1D. In a rat model of streptozotocin (STZ)-induced T1D, GHRH receptor expression was found to be up-regulated in the distal small intestine, a tissue involved in chylomicron synthesis. Treatment of T1D rats with a GHRH antagonist, MIA-602, at a dose that did not affect plasma GH levels, significantly reduced TRL, as well as markers of renal injury, and improved endothelial-dependent vasorelaxation. Glucagon-like peptide 1 (GLP-1) reduces hyperglucagonemia and postprandial TRL, the latter in part through a decreased synthesis of apolipoprotein B-48 (ApoB-48) by intestinal cells. Although plasma GLP-1 levels were elevated in diabetic animals, this was accompanied by increased rather than reduced glucagon levels, suggesting impaired GLP-1 signaling. Treatment with MIA-602 normalized GLP-1 and glucagon to control levels in T1D rats. MIA-602 also decreased secretion of ApoB-48 from rat intestinal epithelial cells in response to oleic acid stimulation in vitro, in part through a GLP-1–dependent mechanism. Our findings support the hypothesis that antagonizing the signaling of GHRH in T1D may improve GLP-1 function in the small intestine, which, in turn, diminishes TRL and reduces renal and vascular complications.


Frontiers in Immunology | 2017

Epithelial sodium channel-α mediates the protective effect of the TNF-derived TIP peptide in pneumolysin-induced endothelial barrier dysfunction

Istvan Czikora; Abdel A. Alli; Supriya Sridhar; Michael A. Matthay; Helena Pillich; Martina Hudel; Besim Berisha; Boris Gorshkov; Maritza J. Romero; Joyce Gonzales; Guangyu Wu; Yuqing Huo; Yunchao Su; Alexander D. Verin; David Fulton; Trinad Chakraborty; Douglas C. Eaton; Rudolf Lucas

Background Streptococcus pneumoniae is a major etiologic agent of bacterial pneumonia. Autolysis and antibiotic-mediated lysis of pneumococci induce release of the pore-forming toxin, pneumolysin (PLY), their major virulence factor, which is a prominent cause of acute lung injury. PLY inhibits alveolar liquid clearance and severely compromises alveolar–capillary barrier function, leading to permeability edema associated with pneumonia. As a consequence, alveolar flooding occurs, which can precipitate lethal hypoxemia by impairing gas exchange. The α subunit of the epithelial sodium channel (ENaC) is crucial for promoting Na+ reabsorption across Na+-transporting epithelia. However, it is not known if human lung microvascular endothelial cells (HL-MVEC) also express ENaC-α and whether this subunit is involved in the regulation of their barrier function. Methods The presence of α, β, and γ subunits of ENaC and protein phosphorylation status in HL-MVEC were assessed in western blotting. The role of ENaC-α in monolayer resistance of HL-MVEC was examined by depletion of this subunit by specific siRNA and by employing the TNF-derived TIP peptide, a specific activator that directly binds to ENaC-α. Results HL-MVEC express all three subunits of ENaC, as well as acid-sensing ion channel 1a (ASIC1a), which has the capacity to form hybrid non-selective cation channels with ENaC-α. Both TIP peptide, which specifically binds to ENaC-α, and the specific ASIC1a activator MitTx significantly strengthened barrier function in PLY-treated HL-MVEC. ENaC-α depletion significantly increased sensitivity to PLY-induced hyperpermeability and in addition, blunted the protective effect of both the TIP peptide and MitTx, indicating an important role for ENaC-α and for hybrid NSC channels in barrier function of HL-MVEC. TIP peptide blunted PLY-induced phosphorylation of both calmodulin-dependent kinase II (CaMKII) and of its substrate, the actin-binding protein filamin A (FLN-A), requiring the expression of both ENaC-α and ASIC1a. Since non-phosphorylated FLN-A promotes ENaC channel open probability and blunts stress fiber formation, modulation of this activity represents an attractive target for the protective actions of ENaC-α in both barrier function and liquid clearance. Conclusion Our results in cultured endothelial cells demonstrate a previously unrecognized role for ENaC-α in strengthening capillary barrier function that may apply to the human lung. Strategies aiming to activate endothelial NSC channels that contain ENaC-α should be further investigated as a novel approach to improve barrier function in the capillary endothelium during pneumonia.

Collaboration


Dive into the Maritza J. Romero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruth B. Caldwell

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Rudolf Lucas

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Supriya Sridhar

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Lin Yao

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Modesto Rojas

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel H. Platt

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

David Fulton

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Huijuan Dou

Georgia Regents University

View shared research outputs
Researchain Logo
Decentralizing Knowledge