Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marius George Linguraru is active.

Publication


Featured researches published by Marius George Linguraru.


Medical Physics | 2010

Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation

Marius George Linguraru; Jesse K. Sandberg; Zhixi Li; Furhawn Shah; Ronald M. Summers

PURPOSE To investigate the potential of the normalized probabilistic atlases and computer-aided medical image analysis to automatically segment and quantify livers and spleens for extracting imaging biomarkers (volume and height). METHODS A clinical tool was developed to segment livers and spleen from 257 abdominal contrast-enhanced CT studies. There were 51 normal livers, 44 normal spleens, 128 splenomegaly, 59 hepatomegaly, and 23 partial hepatectomy cases. 20 more contrast-enhanced CT scans from a public site with manual segmentations of mainly pathological livers were used to test the method. Data were acquired on a variety of scanners from different manufacturers and at varying resolution. Probabilistic atlases of livers and spleens were created using manually segmented data from ten noncontrast CT scans (five male and five female). The organ locations were modeled in the physical space and normalized to the position of an anatomical landmark, the xiphoid. The construction and exploitation of liver and spleen atlases enabled the automated quantifications of liver/spleen volumes and heights (midhepatic liver height and cephalocaudal spleen height) from abdominal CT data. The quantification was improved incrementally by a geodesic active contour, patient specific contrast-enhancement characteristics passed to an adaptive convolution, and correction for shape and location errors. RESULTS The livers and spleens were robustly segmented from normal and pathological cases. For the liver, the Dice/Tanimoto volume overlaps were 96.2%/92.7%, the volume/height errors were 2.2%/2.8%, the root-mean-squared error (RMSE) was 2.3 mm, and the average surface distance (ASD) was 1.2 mm. The spleen quantification led to 95.2%/91% Dice/Tanimoto overlaps, 3.3%/ 1.7% volume/height errors, 1.1 mm RMSE, and 0.7 ASD. The correlations (R2) with clinical/manual height measurements were 0.97 and 0.93 for the spleen and liver, respectively (p < 0.0001). No significant difference (p > 0.2) was found comparing interobserver and automatic-manual volume/height errors for liver and spleen. CONCLUSIONS The algorithm is robust to segmenting normal and enlarged spleens and livers, and in the presence of tumors and large morphological changes due to partial hepatectomy. Imaging biomarkers of the liver and spleen from automated computer-assisted tools have the potential to assist the diagnosis of abdominal disorders from routine analysis of clinical data and guide clinical management.


Medical Image Analysis | 2012

Statistical 4D Graphs for Multi-Organ Abdominal Segmentation from Multiphase CT

Marius George Linguraru; John Pura; Vivek Pamulapati; Ronald M. Summers

The interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis applications. Diagnosis also relies on the comprehensive analysis of multiple organs and quantitative measures of soft tissue. An automated method optimized for medical image data is presented for the simultaneous segmentation of four abdominal organs from 4D CT data using graph cuts. Contrast-enhanced CT scans were obtained at two phases: non-contrast and portal venous. Intra-patient data were spatially normalized by non-linear registration. Then 4D convolution using population training information of contrast-enhanced liver, spleen and kidneys was applied to multiphase data to initialize the 4D graph and adapt to patient-specific data. CT enhancement information and constraints on shape, from Parzen windows, and location, from a probabilistic atlas, were input into a new formulation of a 4D graph. Comparative results demonstrate the effects of appearance, enhancement, shape and location on organ segmentation. All four abdominal organs were segmented robustly and accurately with volume overlaps over 93.6% and average surface distances below 1.1mm.


IEEE Transactions on Medical Imaging | 2012

Tumor Burden Analysis on Computed Tomography by Automated Liver and Tumor Segmentation

Marius George Linguraru; William J. Richbourg; Jianfei Liu; Jeremy M. Watt; Vivek Pamulapati; Shijun Wang; Ronald M. Summers

The paper presents the automated computation of hepatic tumor burden from abdominal computed tomography (CT) images of diseased populations with images with inconsistent enhancement. The automated segmentation of livers is addressed first. A novel 3-D affine invariant shape parameterization is employed to compare local shape across organs. By generating a regular sampling of the organs surface, this parameterization can be effectively used to compare features of a set of closed 3-D surfaces point-to-point, while avoiding common problems with the parameterization of concave surfaces. From an initial segmentation of the livers, the areas of atypical local shape are determined using training sets. A geodesic active contour corrects locally the segmentations of the livers in abnormal images. Graph cuts segment the hepatic tumors using shape and enhancement constraints. Liver segmentation errors are reduced significantly and all tumors are detected. Finally, support vector machines and feature selection are employed to reduce the number of false tumor detections. The tumor detection true position fraction of 100% is achieved at 2.3 false positives/case and the tumor burden is estimated with 0.9% error. Results from the test data demonstrate the methods robustness to analyze livers from difficult clinical cases to allow the temporal monitoring of patients with hepatic cancer.


Medical Image Analysis | 2015

Abdominal multi-organ segmentation from CT images using conditional shape–location and unsupervised intensity priors

Toshiyuki Okada; Marius George Linguraru; Masatoshi Hori; Ronald M. Summers; Noriyuki Tomiyama; Yoshinobu Sato

This paper addresses the automated segmentation of multiple organs in upper abdominal computed tomography (CT) data. The aim of our study is to develop methods to effectively construct the conditional priors and use their prediction power for more accurate segmentation as well as easy adaptation to various imaging conditions in CT images, as observed in clinical practice. We propose a general framework of multi-organ segmentation which effectively incorporates interrelations among multiple organs and easily adapts to various imaging conditions without the need for supervised intensity information. The features of the framework are as follows: (1) A method for modeling conditional shape and location (shape-location) priors, which we call prediction-based priors, is developed to derive accurate priors specific to each subject, which enables the estimation of intensity priors without the need for supervised intensity information. (2) Organ correlation graph is introduced, which defines how the conditional priors are constructed and segmentation processes of multiple organs are executed. In our framework, predictor organs, whose segmentation is sufficiently accurate by using conventional single-organ segmentation methods, are pre-segmented, and the remaining organs are hierarchically segmented using conditional shape-location priors. The proposed framework was evaluated through the segmentation of eight abdominal organs (liver, spleen, left and right kidneys, pancreas, gallbladder, aorta, and inferior vena cava) from 134 CT data from 86 patients obtained under six imaging conditions at two hospitals. The experimental results show the effectiveness of the proposed prediction-based priors and the applicability to various imaging conditions without the need for supervised intensity information. Average Dice coefficients for the liver, spleen, and kidneys were more than 92%, and were around 73% and 67% for the pancreas and gallbladder, respectively.


medical image computing and computer assisted intervention | 2010

Multi-organ segmentation from multi-phase abdominal CT via 4D graphs using enhancement, shape and location optimization

Marius George Linguraru; John Pura; Ananda S. Chowdhury; Ronald M. Summers

The interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis (CAD) applications. Diagnosis also relies on the comprehensive analysis of multiple organs and quantitative measures of soft tissue. An automated method optimized for medical image data is presented for the simultaneous segmentation of four abdominal organs from 4D CT data using graph cuts. Contrast-enhanced CT scans were obtained at two phases: non-contrast and portal venous. Intra-patient data were spatially normalized by non-linear registration. Then 4D erosion using population historic information of contrast-enhanced liver, spleen, and kidneys was applied to multi-phase data to initialize the 4D graph and adapt to patient specific data. CT enhancement information and constraints on shape, from Parzen windows, and location, from a probabilistic atlas, were input into a new formulation of a 4D graph. Comparative results demonstrate the effects of appearance and enhancement, and shape and location on organ segmentation.


Medical Image Analysis | 2006

A biologically inspired algorithm for microcalcification cluster detection

Marius George Linguraru; Kostas Marias; Ruth English; Michael Brady

The early detection of breast cancer greatly improves prognosis. One of the earliest signs of cancer is the formation of clusters of microcalcifications. We introduce a novel method for microcalcification detection based on a biologically inspired adaptive model of contrast detection. This model is used in conjunction with image filtering based on anisotropic diffusion and curvilinear structure removal using local energy and phase congruency. An important practical issue in automatic detection methods is the selection of parameters: we show that the parameter values for our algorithm can be estimated automatically from the image. This way, the method is made robust and essentially free of parameter tuning. We report results on mammograms from two databases and show that the detection performance can be improved by first including a normalisation scheme.


medical image computing and computer assisted intervention | 2009

Atlas-Based Automated Segmentation of Spleen and Liver Using Adaptive Enhancement Estimation

Marius George Linguraru; Jesse K. Sandberg; Zhixi Li; John Pura; Ronald M. Summers

The paper presents the automated segmentation of spleen and liver from contrast-enhanced CT images of normal and hepato/splenomegaly populations. The method used 4 steps: (i) a mean organ model was registered to the patient CT; (ii) the first estimates of the organs were improved by a geodesic active contour; (iii) the contrast enhancements of liver and spleen were estimated to adjust to patient image characteristics, and an adaptive convolution refined the segmentations; (iv) lastly, a normalized probabilistic atlas corrected for shape and location for the precise computation of each organs volume and height (mid-hepatic liver height and cephalocaudal spleen height). Results from test data demonstrated the methods ability to accurately segment the spleen (RMS error = 1.09 mm; DICE/Tanimoto overlaps = 95.2/91) and liver (RMS error = 2.3 mm, and DICE/Tanimoto overlaps = 96.2/92.7). The correlations (R2) with clinical/manual height measurements were 0.97 and 0.93 for the spleen and liver respectively.


Medical Image Analysis | 2014

Digital facial dysmorphology for genetic screening: Hierarchical constrained local model using ICA.

Qian Zhao; Kazunori Okada; Kenneth N. Rosenbaum; Lindsay Kehoe; Dina J. Zand; Raymond W. Sze; Marshall Summar; Marius George Linguraru

Down syndrome, the most common single cause of human birth defects, produces alterations in physical growth and mental retardation. If missed before birth, the early detection of Down syndrome is crucial for the management of patients and disease. However, the diagnostic accuracy for pediatricians prior to cytogenetic results is moderate and the access to specialists is limited in many social and low-economic areas. In this study, we propose a simple, non-invasive and automated framework for Down syndrome detection based on disease-specific facial patterns. Geometric and local texture features are extracted based on automatically detected anatomical landmarks to describe facial morphology and structure. To accurately locate the anatomical facial landmarks, a hierarchical constrained local model using independent component analysis (ICA) is proposed. We also introduce a data-driven ordering method for selecting dominant independent components in ICA. The hierarchical structure of the model increases the accuracy of landmark detection by fitting separate models to different groups. Then the most representative features are selected and we also demonstrate that they match clinical observations. Finally, a variety of classifiers are evaluated to discriminate between Down syndrome and healthy populations. The best performance achieved 0.967 accuracy and 0.956 F1 score using combined features and linear discriminant analysis. The method was also validated on a dataset with mixed genetic syndromes and high performance (0.970 accuracy and 0.930 F1 score) was also obtained. The promising results indicate that our method could assist in Down syndrome screening effectively in a simple, non-invasive way, and extensible to detection of other genetic syndromes.


Pattern Recognition | 2009

Renal tumor quantification and classification in contrast-enhanced abdominal CT

Marius George Linguraru; Jianhua Yao; Rabindra Gautam; James Peterson; Zhixi Li; W. Marston Linehan; Ronald M. Summers

Kidney cancer occurs in both a hereditary (inherited) and sporadic (non-inherited) form. It is estimated that almost a quarter of a million people in the USA are living with kidney cancer and their number increases with 51,000 diagnosed with the disease every year. In clinical practice, the response to treatment is monitored by manual measurements of tumor size, which are 2D, do not reflect the 3D geometry and enhancement of tumors, and show high intra- and inter-operator variability. We propose a computer-assisted radiology tool to assess renal tumors in contrast-enhanced CT for the management of tumor diagnoses and responses to new treatments. The algorithm employs anisotropic diffusion (for smoothing), a combination of fast-marching and geodesic level-sets (for segmentation), and a novel statistical refinement step to adapt to the shape of the lesions. It also quantifies the 3D size, volume and enhancement of the lesion and allows serial management over time. Tumors are robustly segmented and the comparison between manual and semi-automated quantifications shows disparity within the limits of inter-observer variability. The analysis of lesion enhancement for tumor classification shows great separation between cysts, von Hippel-Lindau syndrome lesions and hereditary papillary renal carcinomas (HPRC) with p-values inferior to 0.004. The results on temporal evaluation of tumors from serial scans illustrate the potential of the method to become an important tool for disease monitoring, drug trials and noninvasive clinical surveillance.


American Journal of Neuroradiology | 2010

Combined Diffusion Imaging and MR Spectroscopy in the Diagnosis of Human Prion Diseases

Damien Galanaud; Stéphane Haïk; Marius George Linguraru; Jean-Philippe Ranjeva; Baptiste Faucheux; Elsa Kaphan; Nicholas Ayache; Jacques Chiras; Patrick J. Cozzone; Didier Dormont; Jean-Philippe Brandel

BACKGROUND AND PURPOSE: The physiopathologic bases underlying the signal intensity changes and reduced diffusibility observed in prion diseases (TSEs) are still poorly understood. We evaluated the interest of MRS combined with DWI both as a diagnostic tool and a way to understand the mechanism underlying signal intensity and ADC changes in this setting. MATERIALS AND METHODS: We designed a prospective study of multimodal MR imaging in patients with suspected TSEs. Forty-five patients with a suspicion of TSE and 11 age-matched healthy volunteers were included. The MR imaging protocol included T1, FLAIR, and DWI sequences. MRS was performed on the cerebellum, pulvinar, right lenticular nucleus, and frontal cortex. MR images were assessed visually, and ADC values were calculated. RESULTS: Among the 45 suspected cases, 31 fulfilled the criteria for probable or definite TSEs (19 sCJDs, 3 iCJDs, 2 vCJDs, and 7 genetic TSEs); and 14 were classified as AltDs. High signals in the cortex and/or basal ganglia were observed in 26/31 patients with TSEs on FLAIR and 29/31 patients on DWI. In the basal ganglia, high DWI signals corresponded to a decreased ADC. Metabolic alterations, increased mIns, and decreased NAA were observed in all patients with TSEs. ADC values and metabolic changes were not correlated; this finding suggests that neuronal stress (vacuolization), neuronal loss, and astrogliosis do not alone explain the decrease of ADC. CONCLUSIONS: MRS combined with other MR imaging is of interest in the diagnosis of TSE and provides useful information for understanding physiopathologic processes underlying prion diseases.

Collaboration


Dive into the Marius George Linguraru's collaboration.

Top Co-Authors

Avatar

Ronald M. Summers

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Juan J. Cerrolaza

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shijun Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Antonio R. Porras

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianhua Yao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Qian Zhao

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Emmarie Myers

Children's National Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge