Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariusz Olczak is active.

Publication


Featured researches published by Mariusz Olczak.


Biochimica et Biophysica Acta | 1997

PURIFICATION AND CHARACTERIZATION OF ACID PHOSPHATASE FROM YELLOW LUPIN (LUPINUS LUTEUS) SEEDS

Mariusz Olczak; Wiesław Wa̧torek; Bronisława Morawiecka

Acid phosphatase (EC 3.1.3.2) from yellow lupin (Lupinus luteus) seeds was purified to homogeneity by ammonium sulphate fractionation, affinity chromatography, cation-exchange chromatography, gel filtration or reverse-phase HPLC. The enzyme is a dimer with the 50 kD and 44 kD subunits and contains 7.3% of carbohydrate, forming at least four oligosaccharide chains. The optimum pH for the enzyme is 5.4. The apparent Km for p-nitrophenyl phosphate was estimated to be 0.28 mM and Vmax = 1780 IU/mg of protein. The purified phosphatase has the highest specific activities reported for any plant acid phosphatases measured for any native or synthetic substrate. The enzyme has broad specificity; however, cyclic nucleotides, pyrophosphate or phytate are not cleaved. It is inhibited by molybdate, fluoride and phosphate. There is no change in the enzyme activity in the presence of EDTA, phenanthroline and tartrate.


Archives of Microbiology | 2008

Porphyromonas gingivalis HmuY and HmuR: further characterization of a novel mechanism of heme utilization

Teresa Olczak; Aneta Sroka; Jan Potempa; Mariusz Olczak

Porphyromonas gingivalis HmuY is a putative heme-binding lipoprotein associated with the outer membrane. It is part of an operon together with a gene encoding an outer-membrane hemin utilization receptor (HmuR) and four uncharacterized genes. A similar operon organization was found in Bacteroides fragilis and B. thetaiotaomicron, with the former containing an additional HmuY homologue encoded upstream of the hmuR-like gene. In P. gingivalis cultured under heme-limited conditions, a ∼1-kb hmuY transcript was produced at high levels along with some ∼3.5 and ∼9-kb transcripts. Compared with the parental strain, mutants deficient in hmuY or hmuR or hmuY–hmuR gene function grew more slowly and bound lower amounts of hemin and hemoglobin. Significantly, they grew more slowly or were unable to grow when human serum was used as the sole iron/heme source. Analysis of the hmu promoter showed that it is regulated by iron. The HmuY protein normally occurs as a homodimer, but in the presence of hemin it may form tetramers. These results show that HmuY may be the first reported member of a new class of proteins in Porphyromonas and Bacteroides species involved in heme utilization, a function being exerted in conjunction with HmuR, an outer-membrane heme transporter.


PLOS Pathogens | 2009

Unique Structure and Stability of HmuY, a Novel Heme-Binding Protein of Porphyromonas gingivalis

Halina Wójtowicz; Tibisay Guevara; Cynthia Tallant; Mariusz Olczak; Aneta Sroka; Jan Potempa; Maria Solà; Teresa Olczak; F. Xavier Gomis-Rüth

Infection, survival, and proliferation of pathogenic bacteria in humans depend on their capacity to impair host responses and acquire nutrients in a hostile environment. Among such nutrients is heme, a co-factor for oxygen storage, electron transport, photosynthesis, and redox biochemistry, which is indispensable for life. Porphyromonas gingivalis is the major human bacterial pathogen responsible for severe periodontitis. It recruits heme through HmuY, which sequesters heme from host carriers and delivers it to its cognate outer-membrane transporter, the TonB-dependent receptor HmuR. Here we report that heme binding does not significantly affect the secondary structure of HmuY. The crystal structure of heme-bound HmuY reveals a new all-β fold mimicking a right hand. The thumb and fingers pinch heme iron through two apical histidine residues, giving rise to highly symmetric octahedral iron co-ordination. The tetrameric quaternary arrangement of the protein found in the crystal structure is consistent with experiments in solution. It shows that thumbs and fingertips, and, by extension, the bound heme groups, are shielded from competing heme-binding proteins from the host. This may also facilitate heme transport to HmuR for internalization. HmuY, both in its apo- and in its heme-bound forms, is resistant to proteolytic digestion by trypsin and the major secreted proteases of P. gingivalis, gingipains K and R. It is also stable against thermal and chemical denaturation. In conclusion, these studies reveal novel molecular properties of HmuY that are consistent with its role as a putative virulence factor during bacterial infection.


BMC Microbiology | 2010

Species specificity, surface exposure, protein expression, immunogenicity, and participation in biofilm formation of Porphyromonas gingivalis HmuY

Teresa Olczak; Halina Wójtowicz; Justyna Ciuraszkiewicz; Mariusz Olczak

BackgroundPorphyromonas gingivalis is a major etiological agent of chronic periodontitis. The aim of this study was to examine the species specificity, surface exposure, protein expression, immunogenicity, and participation in biofilm formation of the P. gingivalis heme-binding protein HmuY.ResultsHmuY is a unique protein of P. gingivalis since only low amino-acid sequence homology has been found to proteins encoded in other species. It is exposed on the cell surface and highly abundant in the outer membrane of the cell, in outer-membrane vesicles, and is released into culture medium in a soluble form. The protein is produced constitutively at low levels in bacteria grown under high-iron/heme conditions and at higher levels in bacteria growing under the low-iron/heme conditions typical of dental plaque. HmuY is immunogenic and elicits high IgG antibody titers in rabbits. It is also engaged in homotypic biofilm formation by P. gingivalis. Anti-HmuY antibodies exhibit inhibitory activity against P. gingivalis growth and biofilm formation.ConclusionsHere it is demonstrated that HmuY may play a significant role not only in heme acquisition, but also in biofilm accumulation on abiotic surfaces. The data also suggest that HmuY, as a surface-exposed protein, would be available for recognition by the immune response during chronic periodontitis and the production of anti-HmuY antibodies may inhibit biofilm formation.


Archives of Microbiology | 2012

Gallium(III), cobalt(III) and copper(II) protoporphyrin IX exhibit antimicrobial activity against Porphyromonas gingivalis by reducing planktonic and biofilm growth and invasion of host epithelial cells

Teresa Olczak; Dorota Maszczak-Seneczko; John W. Smalley; Mariusz Olczak

Porphyromonas gingivalis acquires heme for growth, and initiation and progression of periodontal diseases. One of its heme acquisition systems consists of the HmuR and HmuY proteins. This study analyzed the antimicrobial activity of non-iron metalloporphyrins against P. gingivalis during planktonic growth, biofilm formation, epithelial cell adhesion and invasion, and employed hmuY, hmuR and hmuY-hmuR mutants to assess the involvement of HmuY and HmuR proteins in the acquisition of metalloporphyrins. Iron(III) mesoporphyrin IX (mesoheme) and iron(III) deuteroporphyrin IX (deuteroheme) supported planktonic growth of P. gingivalis cells, biofilm accumulation, as well as survival, adhesion and invasion of HeLa cells in a way analogous to protoheme. In contrast, cobalt(III), gallium(III) and copper(II) protoporphyrin IX exhibited antimicrobial activity against P. gingivalis, and thus represent potentially useful antibacterial compounds with which to target P. gingivalis. P. gingivalishmuY, hmuR and hmuY-hmuR mutants showed decreased growth and infection of epithelial cells in the presence of all metalloporphyrins examined. In conclusion, the HmuY protein may not be directly involved in transport of free metalloporphyrins into the bacterial cell, but it may also play a protective role against metalloporphyrin toxicity by binding an excess of these compounds.


Biochemical Journal | 2007

Molecular characterization of the thi3 gene involved in thiamine biosynthesis in Zea mays: cDNA sequence and enzymatic and structural properties of the recombinant bifunctional protein with 4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate) kinase and thiamine monophosphate synthase activities

Maria Rapala-Kozik; Mariusz Olczak; Katarzyna Ostrowska; Agata Starosta; Andrzej Kozik

A thiamine biosynthesis gene, thi3, from maize Zea mays has been identified through cloning and sequencing of cDNA and heterologous overexpression of the encoded protein, THI3, in Escherichia coli. The recombinant THI3 protein was purified to homogeneity and shown to possess two essentially different enzymatic activities of HMP(-P) [4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate)] kinase and TMP (thiamine monophosphate) synthase. Both activities were characterized in terms of basic kinetic constants, with interesting findings that TMP synthase is uncompetitively inhibited by excess of one of the substrates [HMP-PP (HMP diphosphate)] and ATP. A bioinformatic analysis of the THI3 sequence suggested that these activities were located in two distinct, N-terminal kinase and C-terminal synthase, domains. Models of the overall folds of THI3 domains and the arrangements of active centre residues were obtained with the SWISS-MODEL protein modelling server, on the basis of the known three-dimensional structures of Salmonella enterica serotype Typhimurium HMP(-P) kinase and Bacillus subtilis TMP synthase. The essential roles of Gln98 and Met134 residues for HMP kinase activity and of Ser444 for TMP synthase activity were experimentally confirmed by site-directed mutagenesis.


Journal of Biological Chemistry | 2013

UDP-N-acetylglucosamine transporter (SLC35A3) regulates biosynthesis of highly branched N-glycans and keratan sulfate.

Dorota Maszczak-Seneczko; Paulina Sosicka; Teresa Olczak; Piotr Jakimowicz; Michał Majkowski; Mariusz Olczak

Background: Knowledge regarding UDP-N-acetylglucosamine transporter (NGT; SLC35A3) is incomplete due to the lack of NGT-deficient model cell lines. Results: The siRNA approach showed that NGT silencing reduces branching of complex N-glycans and keratan sulfate synthesis. Conclusion: NGT function may be coupled to the specific glycosylation pathway(s) of particular macromolecules. Significance: Our results add to the understanding of glycosylation, one of the basic posttranslational modifications. SLC35A3 is considered the main UDP-N-acetylglucosamine transporter (NGT) in mammals. Detailed analysis of NGT is restricted because mammalian mutant cells defective in this activity have not been isolated. Therefore, using the siRNA approach, we developed and characterized several NGT-deficient mammalian cell lines. CHO, CHO-Lec8, and HeLa cells deficient in NGT activity displayed a decrease in the amount of highly branched tri- and tetraantennary N-glycans, whereas monoantennary and diantennary ones remained unchanged or even were accumulated. Silencing the expression of NGT in Madin-Darby canine kidney II cells resulted in a dramatic decrease in the keratan sulfate content, whereas no changes in biosynthesis of heparan sulfate were observed. We also demonstrated for the first time close proximity between NGT and mannosyl (α-1,6-)-glycoprotein β-1,6-N-acetylglucosaminyltransferase (Mgat5) in the Golgi membrane. We conclude that NGT may be important for the biosynthesis of highly branched, multiantennary complex N-glycans and keratan sulfate. We hypothesize that NGT may specifically supply β-1,3-N-acetylglucosaminyl-transferase 7 (β3GnT7), Mgat5, and possibly mannosyl (α-1,3-)-glycoprotein β-1,4-N-acetylglucosaminyltransferase (Mgat4) with UDP-GlcNAc.


Biochimica et Biophysica Acta | 2000

Characterization of diphosphonucleotide phosphatase/phosphodiesterase from yellow lupin (Lupinus luteus) seeds

Mariusz Olczak; Marcin Kobiałka; Wiesław Wa̧torek

A phosphatase cleaving the pyrophosphate bond in diphosphonucleotides and phosphodiester bond in various phosphodiesters (pH optimum at 6.25) was purified from yellow lupin (Lupinus luteus L.) seeds. The enzyme is 75 kDa monomeric glycoprotein (pI=6.4) with 4.4% of carbohydrate (mannose, N-acetylglucosamine, fucose and xylose). Analysis of its partial amino acid sequence (8 peptides, 101 amino acid residues) together with no divalent cation requirements for catalysis points out that the purified enzyme is different from known plant pyrophosphate cleaving enzymes (apyrases and inorganic pyrophosphatases). Its physiological role could be related to a regulation of diphosphonucleotides level in plant metabolism.


Biochemical and Biophysical Research Communications | 2009

Heme environment in HmuY, the heme-binding protein of Porphyromonas gingivalis

Halina Wójtowicz; Jacek Wojaczyński; Mariusz Olczak; Jarosław Króliczewski; Lechoslaw Latos-Grazynski; Teresa Olczak

Porphyromonas gingivalis, a Gram-negative anaerobic bacterium implicated in the development and progression of chronic periodontitis, acquires heme for growth by a novel mechanism composed of HmuY and HmuR proteins. The aim of this study was to characterize the nature of heme binding to HmuY. The protein was expressed, purified and detailed investigations using UV-vis absorption, CD, MCD, and (1)H NMR spectroscopy were carried out. Ferric heme bound to HmuY may be reduced by sodium dithionite and re-oxidized by potassium ferricyanide. Heme complexed to HmuY, with a midpoint potential of 136mV, is in a low-spin Fe(III) hexa-coordinate environment. Analysis of heme binding to several single and double HmuY mutants with the methionine, histidine, cysteine, or tyrosine residues replaced by an alanine residue identified histidines 134 and 166 as potential heme ligands.


Comparative Biochemistry and Physiology B | 2010

Isolation, characterization and cDNA sequencing of acrosin from turkey spermatozoa.

Mariola Słowińska; Mariusz Olczak; Ewa Liszewska; Wiesław Wątorek; Andrzej Ciereszko

Acrosin (EC 3.4.21.10) is serine proteinase localized in the sperm acrosome and considered to play an essential role in fertilization. In contrast to mammalian, there are only limited data concerning avian acrosin, mostly focused on the characterization of mature enzyme. In the present study, acrosin was isolated from turkey spermatozoa using gel filtration in the presence of 4 M urea at acidic pH. N-terminal Edman sequencing allowed the identification of the first 26 N-terminal amino acids: VVGGTEALHG SWPWIVSIQNPRFAGT. This sequence was used to construct primers and obtain a cDNA sequence from the testis. The amino acid sequence deduced from the cDNA shows that turkey acrosin is initially synthesized as prepro-protein with 19-residue signal peptide. This signal sequence is followed by a 327-residue sequence corresponding to the acrosin zymogen. Turkey proacrosin does not contain a proline-rich segment at the C-terminal portion. Mature turkey acrosin is a two-chain molecule consisting of light and heavy chains and was found to be glycoprotein. The proacrosin/acrosin system exists in turkey spermatozoa and this system can be activated similarly to that of mammals. The high value of association constant strongly suggests that acrosin activity in turkeys can be controlled by a seminal plasma Kazal inhibitor under physiological conditions.

Collaboration


Dive into the Mariusz Olczak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Potempa

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge