Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marjeta Urh is active.

Publication


Featured researches published by Marjeta Urh.


ACS Chemical Biology | 2008

HaloTag: a novel protein labeling technology for cell imaging and protein analysis.

Georgyi V. Los; Lance P. Encell; Mark McDougall; Danette Hartzell; Natasha Karassina; Chad Zimprich; Monika G. Wood; Randy Learish; Rachel Friedman Ohana; Marjeta Urh; Dan Simpson; Jacqui Mendez; Kris Zimmerman; Paul Otto; Gediminas Vidugiris; Ji Zhu; Aldis Darzins; Dieter Klaubert; Robert F. Bulleit; Keith V. Wood

We have designed a modular protein tagging system that allows different functionalities to be linked onto a single genetic fusion, either in solution, in living cells, or in chemically fixed cells. The protein tag (HaloTag) is a modified haloalkane dehalogenase designed to covalently bind to synthetic ligands (HaloTag ligands). The synthetic ligands comprise a chloroalkane linker attached to a variety of useful molecules, such as fluorescent dyes, affinity handles, or solid surfaces. Covalent bond formation between the protein tag and the chloroalkane linker is highly specific, occurs rapidly under physiological conditions, and is essentially irreversible. We demonstrate the utility of this system for cellular imaging and protein immobilization by analyzing multiple molecular processes associated with NF-kappaB-mediated cellular physiology, including imaging of subcellular protein translocation and capture of protein--protein and protein--DNA complexes.


The EMBO Journal | 2013

TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS.

Rachel Deplus; Benjamin Delatte; Marie K. Schwinn; Matthieu Defrance; Jacqui Mendez; Nancy Murphy; Mark A. Dawson; Michael Volkmar; Pascale Putmans; Emilie Calonne; Alan H. Shih; Ross L. Levine; Olivier A. Bernard; Thomas Mercher; Eric Solary; Marjeta Urh; Danette L. Daniels; François Fuks

TET proteins convert 5‐methylcytosine to 5‐hydroxymethylcytosine, an emerging dynamic epigenetic state of DNA that can influence transcription. Evidence has linked TET1 function to epigenetic repression complexes, yet mechanistic information, especially for the TET2 and TET3 proteins, remains limited. Here, we show a direct interaction of TET2 and TET3 with O‐GlcNAc transferase (OGT). OGT does not appear to influence hmC activity, rather TET2 and TET3 promote OGT activity. TET2/3–OGT co‐localize on chromatin at active promoters enriched for H3K4me3 and reduction of either TET2/3 or OGT activity results in a direct decrease in H3K4me3 and concomitant decreased transcription. Further, we show that Host Cell Factor 1 (HCF1), a component of the H3K4 methyltransferase SET1/COMPASS complex, is a specific GlcNAcylation target of TET2/3–OGT, and modification of HCF1 is important for the integrity of SET1/COMPASS. Additionally, we find both TET proteins and OGT activity promote binding of the SET1/COMPASS H3K4 methyltransferase, SETD1A, to chromatin. Finally, studies in Tet2 knockout mouse bone marrow tissue extend and support the data as decreases are observed of global GlcNAcylation and also of H3K4me3, notably at several key regulators of haematopoiesis. Together, our results unveil a step‐wise model, involving TET–OGT interactions, promotion of GlcNAcylation, and influence on H3K4me3 via SET1/COMPASS, highlighting a novel means by which TETs may induce transcriptional activation.


Protein Expression and Purification | 2009

HaloTag7: a genetically engineered tag that enhances bacterial expression of soluble proteins and improves protein purification.

Rachel Friedman Ohana; Lance P. Encell; Kate Zhao; Dan Simpson; Michael R. Slater; Marjeta Urh; Keith V. Wood

Over-expression and purification of soluble and functional proteins remain critical challenges for many aspects of biomolecular research. To address this, we have developed a novel protein tag, HaloTag7, engineered to enhance expression and solubility of recombinant proteins and to provide efficient protein purification coupled with tag removal. HaloTag7 was designed to bind rapidly and covalently with a unique synthetic linker to achieve an essentially irreversible attachment. The synthetic linker may be attached to a variety of entities such as fluorescent dyes and solid supports, permitting labeling of fusion proteins in cell lysates for expression screening, and efficient capture of fusion proteins onto a purification resin. The combination of covalent capture with rapid binding kinetics overcomes the equilibrium-based limitations associated with traditional affinity tags and enables efficient capture even at low expression levels. Following immobilization on the resin, the protein of interest is released by cleavage at an optimized TEV protease recognition site, leaving HaloTag7 bound to the resin and pure protein in solution. Evaluation of HaloTag7 for expression of 23 human proteins in Escherichia coli relative to MBP, GST and His(6)Tag revealed that 74% of the proteins were produced in soluble form when fused to HaloTag7 compared to 52%, 39% and 22%, respectively, for the other tags. Using a subset of the test panel, more proteins fused to HaloTag7 were successfully purified than with the other tags, and these proteins were of higher yield and purity.


Cancer Research | 2015

Generation of a Selective Small Molecule Inhibitor of the CBP/p300 Bromodomain for Leukemia Therapy

Sarah Picaud; Oleg Fedorov; Angeliki Thanasopoulou; Katharina Leonards; Katherine Louise Jones; Julia Meier; Heidi Olzscha; Octovia P. Monteiro; Sarah Martin; Martin Philpott; Anthony Tumber; Panagis Filippakopoulos; Clarence Yapp; Christopher Wells; Ka Hing Che; Andrew J. Bannister; Samuel Robson; Umesh Kumar; Nigel James Parr; Kevin Lee; Dave Lugo; Philip Jeffrey; Simon Taylor; Matteo Vecellio; C. Bountra; Paul E. Brennan; Alison O'Mahony; Sharlene Velichko; Susanne Müller; Duncan Hay

The histone acetyltransferases CBP/p300 are involved in recurrent leukemia-associated chromosomal translocations and are key regulators of cell growth. Therefore, efforts to generate inhibitors of CBP/p300 are of clinical value. We developed a specific and potent acetyl-lysine competitive protein-protein interaction inhibitor, I-CBP112, that targets the CBP/p300 bromodomains. Exposure of human and mouse leukemic cell lines to I-CBP112 resulted in substantially impaired colony formation and induced cellular differentiation without significant cytotoxicity. I-CBP112 significantly reduced the leukemia-initiating potential of MLL-AF9(+) acute myeloid leukemia cells in a dose-dependent manner in vitro and in vivo. Interestingly, I-CBP112 increased the cytotoxic activity of BET bromodomain inhibitor JQ1 as well as doxorubicin. Collectively, we report the development and preclinical evaluation of a novel, potent inhibitor targeting CBP/p300 bromodomains that impairs aberrant self-renewal of leukemic cells. The synergistic effects of I-CBP112 and current standard therapy (doxorubicin) as well as emerging treatment strategies (BET inhibition) provide new opportunities for combinatorial treatment of leukemia and potentially other cancers.


Methods in Enzymology | 2009

AFFINITY CHROMATOGRAPHY: GENERAL METHODS

Marjeta Urh; Dan Simpson; Kate Zhao

Affinity chromatography is one of the most diverse and powerful chromatographic methods for purification of a specific molecule or a group of molecules from complex mixtures. It is based on highly specific biological interactions between two molecules, such as interactions between enzyme and substrate, receptor and ligand, or antibody and antigen. These interactions, which are typically reversible, are used for purification by placing one of the interacting molecules, referred to as affinity ligand, onto a solid matrix to create a stationary phase while the target molecule is in the mobile phase. Successful affinity purification requires a certain degree of knowledge and understanding of the nature of interactions between the target molecule and the ligand to help determine the selection of an appropriate affinity ligand and purification procedure. With the growing popularity of affinity purification, many of the commonly used ligands coupled to affinity matrices are now commercially available and are ready to use. However, in some cases new affinity chromatographic material may need to be developed by coupling the ligand onto the matrix such that the ligand retains specific binding affinity for the molecule of interest. In this chapter, we discuss factors which are important to consider when selecting the ligand, proper attachment chemistry, and the matrix. In recent years, matrices with unique features which overcome some of the limitations of more traditional materials have been developed and these are also described. Affinity purification can provide significant time savings and several hundred-fold or higher purification, but the success depends on the method used. Thus, it is important to optimize the purification protocol to achieve efficient capture and maximum recovery of the target.


Current Chemical Genomics | 2013

Development of a dehalogenase-based protein fusion tag capable of rapid, selective and covalent attachment to customizable ligands.

Lance P. Encell; Rachel Friedman Ohana; Kris Zimmerman; Paul Otto; Gediminas Vidugiris; Monika G. Wood; Georgyi V. Los; Mark McDougall; Chad Zimprich; Natasha Karassina; Randall D. Learish; James Robert Hartnett; Sarah Wheeler; Pete Stecha; Jami English; Kate Zhao; Jacqui Mendez; Hélène A Benink; Nancy Murphy; Danette L. Daniels; Michael R. Slater; Marjeta Urh; Aldis Darzins; Dieter Klaubert; Robert F. Bulleit; Keith V. Wood

Our fundamental understanding of proteins and their biological significance has been enhanced by genetic fusion tags, as they provide a convenient method for introducing unique properties to proteins so that they can be examinedin isolation. Commonly used tags satisfy many of the requirements for applications relating to the detection and isolation of proteins from complex samples. However, their utility at low concentration becomes compromised if the binding affinity for a detection or capture reagent is not adequate to produce a stable interaction. Here, we describe HaloTag® (HT7), a genetic fusion tag based on a modified haloalkane dehalogenase designed and engineered to overcome the limitation of affinity tags by forming a high affinity, covalent attachment to a binding ligand. HT7 and its ligand have additional desirable features. The tag is relatively small, monomeric, and structurally compatible with fusion partners, while the ligand is specific, chemically simple, and amenable to modular synthetic design. Taken together, the design features and molecular evolution of HT7 have resulted in a superior alternative to common tags for the overexpression, detection, and isolation of target proteins.


Protein Expression and Purification | 2011

HaloTag-based purification of functional human kinases from mammalian cells.

Rachel Friedman Ohana; Jolanta Vidugiriene; Michael R. Slater; Keith V. Wood; Marjeta Urh

Although cultured mammalian cells are preferred for producing functional mammalian proteins with appropriate post-translational modifications, purification of recombinant proteins is frequently hampered by low expression. We have addressed this by creating a new method configured specifically for mammalian cell culture that provides rapid detection and efficient purification. This approach is based on HaloTag, a protein fusion tag designed to bind rapidly, selectively and covalently to a series of synthetic ligands that can carry a variety of functional groups, including fluorescent dyes for detection or solid supports for purification. Since the binding of HaloTag to the HaloLink resin is essentially irreversible, it overcomes the equilibrium-based binding limitations associated with affinity tags and enables efficient capture and purification of target protein, even at low expression levels. The target protein is released from the HaloLink resin by specific cleavage using a TEV protease fused to HaloTag (HaloTEV), leaving both HaloTag and HaloTEV permanently attached to the resin and highly pure, tag-free protein in solution. HaloTag fluorescent ligands enable fluorescent labeling of HaloTag fusion proteins, providing a convenient way to monitor expression, and thus facilitate the identification of optimal transient transfection conditions as well as the selection of high expression stable cell lines. The capabilities of this method have been demonstrated by the efficient purification of five functional human kinases from HEK293T cells. In addition, when purifications using FLAG, 3xFLAG, His(6)Tag and HaloTag were performed in parallel, HaloTag was shown to provide significantly higher yields, purity and overall recovery of the expressed proteins.


Journal of Proteome Research | 2012

Examining the complexity of human RNA polymerase complexes using HaloTag technology coupled to label free quantitative proteomics

Danette L. Daniels; Jacqui Mendez; Amber L. Mosley; Sreenivasa R. Ramisetty; Nancy Murphy; Hélène A Benink; Keith V. Wood; Marjeta Urh; Michael P. Washburn

Efficient determination of protein interactions and cellular localization remains a challenge in higher order eukaryotes and creates a need for robust technologies for functional proteomics studies. To address this, the HaloTag technology was developed for highly efficient and rapid isolation of intracellular complexes and correlative in vivo cellular imaging. Here we demonstrate the strength of this technology by simultaneous capture of human eukaryotic RNA polymerases (RNAP) I, II, and III using a shared subunit, POLR2H, fused to the HaloTag. Affinity purifications showed successful isolation, as determined using quantitative proteomics, of all RNAP core subunits, even at expression levels near endogenous. Transient known RNAP II interacting partners were identified as well as three previously uncharacterized interactors. These interactions were validated and further functionally characterized using cellular imaging. The multiple capabilities of the HaloTag technology demonstrate the ability to efficiently isolate highly challenging multiprotein complexes, discover new interactions, and characterize cellular localization.


BMC Genomics | 2009

A functional analysis of the CREB signaling pathway using HaloCHIP-chip and high throughput reporter assays

Danette Hartzell; Nathan D. Trinklein; Jacqui Mendez; Nancy Murphy; Shelley Force Aldred; Keith V. Wood; Marjeta Urh

BackgroundRegulation of gene expression is essential for normal development and cellular growth. Transcriptional events are tightly controlled both spatially and temporally by specific DNA-protein interactions. In this study we finely map the genome-wide targets of the CREB protein across all known and predicted human promoters, and characterize the functional consequences of a subset of these binding events using high-throughput reporter assays. To measure CREB binding, we used HaloCHIP, an antibody-free alternative to the ChIP method that utilizes the HaloTag fusion protein, and also high-throughput promoter-luciferase reporter assays, which provide rapid and quantitative screening of promoters for transcriptional activation or repression in living cells.ResultsIn analysis of CREB genome-wide binding events using a comprehensive DNA microarray of human promoters, we observe for the first time that CREB has a strong preference for binding at bidirectional promoters and unlike unidirectional promoters, these binding events often occur downstream of transcription start sites. Comparison between HaloCHIP-chip and ChIP-chip data reveal this to be true for both methodologies, indicating it is not a bias of the technology chosen. Transcriptional data obtained from promoter-luciferase reporter arrays also show an unprecedented, high level of activation of CREB-bound promoters in the presence of the co-activator protein TORC1.ConclusionThese data suggest for the first time that TORC1 provides directional information when CREB is bound at bidirectional promoters and possible pausing of the CREB protein after initial transcriptional activation. Also, this combined approach demonstrates the ability to more broadly characterize CREB protein-DNA interactions wherein not only DNA binding sites are discovered, but also the potential of the promoter sequence to respond to CREB is evaluated.


Analytical Chemistry | 2013

Mass Spectrometry Compatible Surfactant for Optimized In-Gel Protein Digestion

Sergei Saveliev; Carolyn C. Woodroofe; Grzegorz Sabat; Christopher M. Adams; Dieter Klaubert; Keith V. Wood; Marjeta Urh

Identification of proteins resolved by SDS-PAGE depends on robust in-gel protein digestion and efficient peptide extraction, requirements that are often difficult to achieve. A lengthy and laborious procedure is an additional challenge of protein identification in gel. We show here that with the use of the mass spectrometry compatible surfactant sodium 3-((1-(furan-2-yl)undecyloxy)carbonylamino)propane-1-sulfonate, the challenges of in-gel protein digestion are effectively addressed. Peptide quantitation based on stable isotope labeling showed that the surfactant induced 1.5-2 fold increase in peptide recovery. Consequently, protein sequence coverage was increased by 20-30%, on average, and the number of identified proteins saw a substantial boost. The surfactant also accelerated the digestion process. Maximal in-gel digestion was achieved in as little as one hour, depending on incubation temperature, and peptides were readily recovered from gel eliminating the need for postdigestion extraction. This study shows that the surfactant provides an efficient means of improving protein identification in gel and streamlining the in-gel digestion procedure requiring no extra handling steps or special equipment.

Collaboration


Dive into the Marjeta Urh's collaboration.

Researchain Logo
Decentralizing Knowledge