Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marjo Kestilä is active.

Publication


Featured researches published by Marjo Kestilä.


Molecular Cell | 1998

Positionally Cloned Gene for a Novel Glomerular Protein—Nephrin—Is Mutated in Congenital Nephrotic Syndrome

Marjo Kestilä; Ulla Lenkkeri; Minna Männikkö; Jane E. Lamerdin; Paula McCready; Heli Putaala; Vesa Ruotsalainen; Takako Morita; Marja Nissinen; Riitta Herva; Clifford E. Kashtan; Leena Peltonen; Christer Holmberg; Anne S. Olsen; Karl Tryggvason

Congenital nephrotic syndrome of the Finnish type (NPHS1) is an autosomal-recessive disorder, characterized by massive proteinuria in utero and nephrosis at birth. In this study, the 150 kb critical region of NPHS1 was sequenced, revealing the presence of at least 11 genes, the structures of 5 of which were determined. Four different mutations segregating with the disease were found in one of the genes in NPHS1 patients. The NPHS1 gene product, termed nephrin, is a 1241-residue putative transmembrane protein of the immunoglobulin family of cell adhesion molecules, which by Northern and in situ hybridization was shown to be specifically expressed in renal glomeruli. The results demonstrate a crucial role for this protein in the development or function of the kidney filtration barrier.


Nature Genetics | 2006

MKS1 , encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome

Mira Kyttälä; Jonna Tallila; Riitta Salonen; Outi Kopra; Nicolai Kohlschmidt; Paulina Paavola-Sakki; Leena Peltonen; Marjo Kestilä

Meckel syndrome (MKS) is a severe fetal developmental disorder reported in most populations. The clinical hallmarks are occipital meningoencephalocele, cystic kidney dysplasia, fibrotic changes of the liver and polydactyly. Here we report the identification of a gene, MKS1, mutated in MKS families linked to 17q. Mks1 expression in mouse embryos, as determined by in situ hybridization, agrees well with the tissue phenotype of MKS. Comparative genomics and proteomics data implicate MKS1 in ciliary functions.


Nature Genetics | 2008

Mutations in mRNA export mediator GLE1 result in a fetal motoneuron disease

Heidi O Nousiainen; Marjo Kestilä; Niklas Pakkasjärvi; Heli Honkala; Satu Kuure; Jonna Tallila; Katri Vuopala; Jaakko Ignatius; Riitta Herva; Leena Peltonen

The most severe forms of motoneuron disease manifest in utero are characterized by marked atrophy of spinal cord motoneurons and fetal immobility. Here, we report that the defective gene underlying lethal motoneuron syndrome LCCS1 is the mRNA export mediator GLE1. Our finding of mutated GLE1 exposes a common pathway connecting the genes implicated in LCCS1, LCCS2 and LCCS3 and elucidates mRNA processing as a critical molecular mechanism in motoneuron development and maturation.


American Journal of Pathology | 2000

Role of nephrin in cell junction formation in human nephrogenesis.

Vesa Ruotsalainen; Jaakko Patrakka; Päivi Tissari; Paula Reponen; Michael W. Hess; Marjo Kestilä; Christer Holmberg; Riitta Salonen; Markku Heikinheimo; Jorma Wartiovaara; Karl Tryggvason; Hannu Jalanko

Nephrin is a cell adhesion protein located at the slit diaphragm area of glomerular podocytes. Mutations in nephrin-coding gene (NPHS1) cause congenital nephrotic syndrome (NPHS1). We studied the developmental expression of nephrin, ZO-1 and P-cadherin in normal fetal kidneys and in NPHS1 kidneys. We used in situ hybridization and immunohistochemistry at light and electron microscopic levels. Nephrin and zonula occludens-1 (ZO-1) were first expressed in late S-shaped bodies. During capillary loop stage, nephrin and ZO-1 localized at the basal margin and in the cell-cell adhesion sites between developing podocytes, especially in junctions with ladder-like structures. In mature glomeruli, nephrin and ZO-1 concentrated at the slit diaphragm area. P-cadherin was first detected in ureteric buds, tubules, and vesicle stage glomeruli. Later, P-cadherin was seen at the basal margin of developing podocytes. Fetal NPHS1 kidneys with Fin-major/Fin-major genotype did not express nephrin, whereas the expression of ZO-1 and P-cadherin was comparable to that of control kidneys. Although early junctional complexes proved structurally normal, junctions with ladder-like structures and slit diaphragms were completely missing. The results indicate that nephrin is dispensable for early development of podocyte junctional complexes. However, nephrin appears to be essential for formation of junctions with ladder-like structures and slit diaphragms.


European Journal of Human Genetics | 2009

The mutation spectrum in RECQL4 diseases.

H. Annika Siitonen; Jenni Sotkasiira; Martine Biervliet; Abdelmadjid Benmansour; Yline Capri; Valérie Cormier-Daire; Barbara Crandall; Katariina Hannula-Jouppi; Raoul C. M. Hennekam; Denise Herzog; Kathelijn Keymolen; Marita Lipsanen-Nyman; Peter Miny; Sharon E. Plon; Stefan Riedl; Ajoy Sarkar; Fernando R Vargas; Alain Verloes; Lisa L. Wang; Helena Kääriäinen; Marjo Kestilä

Mutations in the RECQL4 gene can lead to three clinical phenotypes with overlapping features. All these syndromes, Rothmund–Thomson (RTS), RAPADILINO and Baller–Gerold (BGS), are characterized by growth retardation and radial defects, but RAPADILINO syndrome lacks the main dermal manifestation, poikiloderma that is a hallmark feature in both RTS and BGS. It has been previously shown that RTS patients with RECQL4 mutations are at increased risk of osteosarcoma, but the precise incidence of cancer in RAPADILINO and BGS has not been determined. Here, we report that RAPADILINO patients identified as carriers of the c.1390+2delT mutation (p.Ala420_Ala463del) are at increased risk to develop lymphoma or osteosarcoma (6 out of 15 patients). We also summarize all the published RECQL4 mutations and their associated cancer cases and provide an update of 14 novel RECQL4 mutations with accompanying clinical data.


American Journal of Human Genetics | 2008

Identification of CC2D2A as a Meckel Syndrome Gene Adds an Important Piece to the Ciliopathy Puzzle

Jonna Tallila; Eveliina Jakkula; Leena Peltonen; Riitta Salonen; Marjo Kestilä

Meckel syndrome (MKS) is a lethal malformation disorder characterized classically by encephalocele, polycystic kidneys, and polydactyly. MKS is also one of the major contributors to syndromic neural tube defects (NTDs). Recent findings have shown primary cilia dysfunction in the molecular background of MKS, indicating that cilia are critical for early human development. However, even though four genes behind MKS have been identified to date, they elucidate only a minor proportion of the MKS cases. In this study, instead of traditional linkage analysis, we selected 10 nonrelated affected fetuses and looked for the homozygous regions shared by them. Based on this strategy, we identified the sixth locus and the fifth gene, CC2D2A (MKS6), behind MKS. The biological function of CC2D2A is uncharacterized, but the corresponding polypeptide is predicted to be involved in ciliary functions and it has a calcium binding domain (C2). Immunofluorescence staining of patients fibroblast cells demonstrates that the cells lack cilia, providing evidence for the critical role of CC2D2A in cilia formation. Our finding is very significant not only to understand the molecular background of MKS, but also to obtain additional information about the function of the cilia, which can help to understand their significance in normal development and also in other ciliopathies, which are an increasing group of disorders with overlapping phenotypes.


The Lancet | 2002

Proteinuria and prenatal diagnosis of congenital nephrosis in fetal carriers of nephrin gene mutations

Jaakko Patrakka; Paula Martin; Riitta Salonen; Marjo Kestilä; Vesa Ruotsalainen; Minna Männikkö; Markku Ryynänen; Juhani Rapola; Christer Holmberg; Karl Tryggvason; Hannu Jalanko

High concentrations of alpha-fetoprotein (AFP) are used for prenatal diagnosis of the Finnish type of congenital nephrotic syndrome (NPHS1). We investigated the validity of this test. We retrospectively established fetal NPHS1 genotype and assessed renal pathology in 21 pregnancies that had been terminated because of raised concentrations of AFP in amniotic fluid. 12 fetuses were homozygous and nine were heterozygous (carriers) for NPHS1 mutations. Raised concentrations of AFP and similar proteinuric features in fetal kidneys were seen in both groups, indicating that these signs are unreliable for prenatal diagnosis of congenital nephrosis. We strongly recommend the use of mutation analysis of the NPHS1 gene to confirm the AFP results in prenatal diagnosis of NPHS1.


Genomics | 1991

Cloning of human heparan sulfate proteoglycan core protein, assignment of the gene (HSPG2) to 1p36.1→p35 and identification of a BamHI restriction fragment length polymorphism

Pekka Kallunki; Roger L. Eddy; M.G. Byers; Marjo Kestilä; Thomas B. Shows; Karl Tryggvason

We have isolated a cDNA coding for the core protein of the large basement membrane heparan sulfate proteoglycan (HSPG) from a human fibrosarcoma cell (HT1080) library. The library was screened with a mouse cDNA probe and one clone obtained, with a 1.5-kb insert, was isolated and sequenced. The sequence contained an open reading frame coding for 507 amino acid residues with a 84% identity to the corresponding mouse sequence. This amino acid sequence contained several cysteine-rich internal repeats similar to those found in component chains of laminin. The HSPG cDNA clone was used to assign the gene (HSPG2) to the p36.1----p35 region of chromosome 1 using both somatic cell hybrid and in situ hybridization. In the study of the polymorphisms of the locus, a BamHI restriction fragment length polymorphism was identified in the gene. This polymorphism displayed bands of 23 and 12 kb with allele frequencies of 76 and 24%, respectively.


American Journal of Human Genetics | 1998

Assignment of the Locus for PLO-SL, a Frontal-Lobe Dementia with Bone Cysts, to 19q13

Petra Pekkarinen; Iiris Hovatta; Panu Hakola; Osmo Järvi; Marjo Kestilä; Ulla Lenkkeri; Rolf Adolfsson; Gösta Holmgren; Per-Olof Nylander; Lisbeth Tranebjærg; Joseph D. Terwilliger; Jouko Lönnqvist; Leena Peltonen

PLO-SL (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy) is a recessively inherited disorder characterized by systemic bone cysts and progressive presenile frontal-lobe dementia, resulting in death at <50 years of age. Since the 1960s, approximately 160 cases have been reported, mainly in Japan and Finland. The pathogenesis of the disease is unknown. In this article, we report the assignment of the locus for PLO-SL, by random genome screening using a modification of the haplotype-sharing method, in patients from a genetically isolated population. By screening five patient samples from 2 Finnish families, followed by linkage analysis of 12 Finnish families, 3 Swedish families, and 1 Norwegian family, we were able to assign the PLO-SL locus to a 9-cM interval between markers D19S191 and D19S420 on chromosome 19q13. The critical region was further restricted, to approximately 1.8 Mb, by linkage-disequilibrium analysis of the Finnish families. According to the haplotype analysis, one Swedish and one Norwegian PLO-SL family are not linked to the chromosome 19 locus, suggesting that PLO-SL is a heterogeneous disease. In this chromosomal region, one potential candidate gene for PLO-SL, the gene encoding amyloid precursor-like protein 1, was analyzed, but no mutations were detected in the coding region.


American Journal of Medical Genetics Part A | 2006

Lethal congenital contracture syndrome (LCCS) and other lethal arthrogryposes in Finland--an epidemiological study.

Niklas Pakkasjärvi; Annukka Ritvanen; Riitta Herva; Leena Peltonen; Marjo Kestilä; Jaakko Ignatius

Arthrogryposis multiplex congenita is a heterogeneous group of disorders characterized by multiple contractures with an estimated frequency of 1 in 3,000 births. With improving diagnostic methods, increasing numbers of fetuses with arthrogryposis are found. The pathogenetic mechanisms are relatively well known but the epidemiology and genetics of the prenatally lethal forms of arthrogryposis are less well known. In this study we collected all cases of a multiple contractures diagnosed in Finland during 1987–2002 including live born infants, stillbirths, and terminated pregnancies. Ninety‐two cases of 214 suffered intrauterine demise (68 selective pregnancy terminations and 24 stillbirths) and 58 died in infancy. In 141 out of these cases the diagnosis could be included within lethal arthrogryposes, with a prevalence of 1 in 6,985 (1.43/10,000) births. Of these, 59 had spinal cord pathology at autopsy and thus were of neurogenic origin. Thirty‐nine cases had lethal congenital contracture syndrome (LCCS) clinically characterized by total immobility of the fetus at all ultrasound examinations (12 weeks or later), multiple joint contractures in both upper and lower limbs, hydrops, and fetal death before the 32nd week of pregnancy. LCCS is noted as a unique Finnish disorder with a prevalence of 1 in 25,250 (0.40/10,000) births and is a major cause of lethal arthrogryposis in Finland.

Collaboration


Dive into the Marjo Kestilä's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge