Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marjolijn J. L. Ligtenberg is active.

Publication


Featured researches published by Marjolijn J. L. Ligtenberg.


Nature Genetics | 2009

Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3' exons of TACSTD1.

Marjolijn J. L. Ligtenberg; Roland P. Kuiper; Tsun Leung Chan; Monique Goossens; Konnie M. Hebeda; Marsha Voorendt; Tracy Y H Lee; Danielle Bodmer; Eveline Hoenselaar; Sandra J B Hendriks-Cornelissen; Wai Yin Tsui; Chi Kwan Kong; Han G. Brunner; Ad Geurts van Kessel; Siu Tsan Yuen; J. Han van Krieken; Suet Yi Leung; Nicoline Hoogerbrugge

Lynch syndrome patients are susceptible to colorectal and endometrial cancers owing to inactivating germline mutations in mismatch repair genes, including MSH2 (ref. 1). Here we describe patients from Dutch and Chinese families with MSH2-deficient tumors carrying heterozygous germline deletions of the last exons of TACSTD1, a gene directly upstream of MSH2 encoding Ep-CAM. Due to these deletions, transcription of TACSTD1 extends into MSH2. The MSH2 promoter in cis with the deletion is methylated in Ep-CAM positive but not in Ep-CAM negative normal tissues, thus revealing a correlation between activity of the mutated TACSTD1 allele and epigenetic inactivation of the corresponding MSH2 allele. Gene silencing by transcriptional read-through of a neighboring gene in either sense, as demonstrated here, or antisense direction, could represent a general mutational mechanism. Depending on the expression pattern of the neighboring gene that lacks its normal polyadenylation signal, this may cause either generalized or mosaic patterns of epigenetic inactivation.


American Journal of Human Genetics | 2008

Common Breast Cancer-Predisposition Alleles Are Associated with Breast Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

Antonis C. Antoniou; Amanda B. Spurdle; Olga M. Sinilnikova; Sue Healey; Karen A. Pooley; Rita K. Schmutzler; Beatrix Versmold; Christoph Engel; Alfons Meindl; Norbert Arnold; Wera Hofmann; Christian Sutter; Dieter Niederacher; Helmut Deissler; Trinidad Caldés; Kati Kämpjärvi; Heli Nevanlinna; Jacques Simard; Jonathan Beesley; Xiaoqing Chen; Susan L. Neuhausen; Timothy R. Rebbeck; Theresa Wagner; Henry T. Lynch; Claudine Isaacs; Jeffrey N. Weitzel; Patricia A. Ganz; Mary B. Daly; Gail E. Tomlinson; Olufunmilayo I. Olopade

Germline mutations in BRCA1 and BRCA2 confer high risks of breast cancer. However, evidence suggests that these risks are modified by other genetic or environmental factors that cluster in families. A recent genome-wide association study has shown that common alleles at single nucleotide polymorphisms (SNPs) in FGFR2 (rs2981582), TNRC9 (rs3803662), and MAP3K1 (rs889312) are associated with increased breast cancer risks in the general population. To investigate whether these loci are also associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers, we genotyped these SNPs in a sample of 10,358 mutation carriers from 23 studies. The minor alleles of SNP rs2981582 and rs889312 were each associated with increased breast cancer risk in BRCA2 mutation carriers (per-allele hazard ratio [HR] = 1.32, 95% CI: 1.20-1.45, p(trend) = 1.7 x 10(-8) and HR = 1.12, 95% CI: 1.02-1.24, p(trend) = 0.02) but not in BRCA1 carriers. rs3803662 was associated with increased breast cancer risk in both BRCA1 and BRCA2 mutation carriers (per-allele HR = 1.13, 95% CI: 1.06-1.20, p(trend) = 5 x 10(-5) in BRCA1 and BRCA2 combined). These loci appear to interact multiplicatively on breast cancer risk in BRCA2 mutation carriers. The differences in the effects of the FGFR2 and MAP3K1 SNPs between BRCA1 and BRCA2 carriers point to differences in the biology of BRCA1 and BRCA2 breast cancer tumors and confirm the distinct nature of breast cancer in BRCA1 mutation carriers.


British Journal of Cancer | 2006

A multiplex PCR predictor for aCGH success of FFPE samples

E.H. van Beers; Simon A. Joosse; Marjolijn J. L. Ligtenberg; R. Fles; Frans B. L. Hogervorst; Senno Verhoef; Petra M. Nederlof

Formalin-fixed, paraffin-embedded (FFPE) tissue archives are the largest and longest time-spanning collections of patient material in pathology archives. Methods to disclose information with molecular techniques, such as array comparative genomic hybridisation (aCGH) have rapidly developed but are still not optimal. Array comparative genomic hybridisation is one efficient method for finding tumour suppressors and oncogenes in solid tumours, and also for classification of tumours. The fastest way of analysing large numbers of tumours is through the use of archival tissue samples with first, the huge advantage of larger median follow-up time of patients studied and second, the advantage of being able to locate and analyse multiple tumours, even across generations, from related individuals (families). Unfortunately, DNA from archival tissues is not always suitable for molecular analysis due to insufficient quality. Until now, this quality remained undefined. We report the optimisation of a genomic-DNA isolation procedure from FFPE pathology archives in combination with a subsequent multiplex PCR-based quality-control that simply identified all samples refractory to further DNA-based analyses.


Human Mutation | 2013

A Post-Hoc Comparison of the Utility of Sanger Sequencing and Exome Sequencing for the Diagnosis of Heterogeneous Diseases

Kornelia Neveling; Ilse Feenstra; Christian Gilissen; Lies H. Hoefsloot; Erik-Jan Kamsteeg; Arjen R. Mensenkamp; Richard J. Rodenburg; Helger G. Yntema; Liesbeth Spruijt; Sascha Vermeer; Tuula Rinne; Koen L. van Gassen; Danielle Bodmer; Dorien Lugtenberg; Rick de Reuver; Wendy Buijsman; Ronny Derks; Nienke Wieskamp; Bert van den Heuvel; Marjolijn J. L. Ligtenberg; Hannie Kremer; David A. Koolen; Bart P. van de Warrenburg; Frans P.M. Cremers; Carlo Marcelis; Jan A.M. Smeitink; Saskia B. Wortmann; Wendy A. G. van Zelst-Stams; Joris A. Veltman; Han G. Brunner

The advent of massive parallel sequencing is rapidly changing the strategies employed for the genetic diagnosis and research of rare diseases that involve a large number of genes. So far it is not clear whether these approaches perform significantly better than conventional single gene testing as requested by clinicians. The current yield of this traditional diagnostic approach depends on a complex of factors that include gene‐specific phenotype traits, and the relative frequency of the involvement of specific genes. To gauge the impact of the paradigm shift that is occurring in molecular diagnostics, we assessed traditional Sanger‐based sequencing (in 2011) and exome sequencing followed by targeted bioinformatics analysis (in 2012) for five different conditions that are highly heterogeneous, and for which our center provides molecular diagnosis. We find that exome sequencing has a much higher diagnostic yield than Sanger sequencing for deafness, blindness, mitochondrial disease, and movement disorders. For microsatellite‐stable colorectal cancer, this was low under both strategies. Even if all genes that could have been ordered by physicians had been tested, the larger number of genes captured by the exome would still have led to a clearly superior diagnostic yield at a fraction of the cost.


Journal of Medical Genetics | 2015

Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers

Rachel S. van der Post; Ingrid P. Vogelaar; Fátima Carneiro; Parry Guilford; David Huntsman; Nicoline Hoogerbrugge; Carlos Caldas; Karen E Chelcun Schreiber; Richard H. Hardwick; Margreet G. E. M. Ausems; Linda Bardram; Patrick R. Benusiglio; Tanya M. Bisseling; Vanessa Blair; Eveline M. A. Bleiker; Alex Boussioutas; Annemieke Cats; Daniel G. Coit; Lynn DeGregorio; Joana Figueiredo; James M. Ford; Esther Heijkoop; Rosella Hermens; Bostjan Humar; Pardeep Kaurah; G. Keller; Jennifer Lai; Marjolijn J. L. Ligtenberg; Maria O'Donovan; Carla Oliveira

Germline CDH1 mutations confer a high lifetime risk of developing diffuse gastric (DGC) and lobular breast cancer (LBC). A multidisciplinary workshop was organised to discuss genetic testing, surgery, surveillance strategies, pathology reporting and the patients perspective on multiple aspects, including diet post gastrectomy. The updated guidelines include revised CDH1 testing criteria (taking into account first-degree and second-degree relatives): (1) families with two or more patients with gastric cancer at any age, one confirmed DGC; (2) individuals with DGC before the age of 40 and (3) families with diagnoses of both DGC and LBC (one diagnosis before the age of 50). Additionally, CDH1 testing could be considered in patients with bilateral or familial LBC before the age of 50, patients with DGC and cleft lip/palate, and those with precursor lesions for signet ring cell carcinoma. Given the high mortality associated with invasive disease, prophylactic total gastrectomy at a centre of expertise is advised for individuals with pathogenic CDH1 mutations. Breast cancer surveillance with annual breast MRI starting at age 30 for women with a CDH1 mutation is recommended. Standardised endoscopic surveillance in experienced centres is recommended for those opting not to have gastrectomy at the current time, those with CDH1 variants of uncertain significance and those that fulfil hereditary DGC criteria without germline CDH1 mutations. Expert histopathological confirmation of (early) signet ring cell carcinoma is recommended. The impact of gastrectomy and mastectomy should not be underestimated; these can have severe consequences on a psychological, physiological and metabolic level. Nutritional problems should be carefully monitored.


Gastroenterology | 2014

Somatic Mutations in MLH1 and MSH2 Are a Frequent Cause of Mismatch-Repair Deficiency in Lynch Syndrome-Like Tumors

Arjen R. Mensenkamp; Ingrid P. Vogelaar; Wendy A.G. van Zelst–Stams; Monique Goossens; Hicham Ouchene; Sandra J B Cornelissen; Michael P. Kwint; Nicoline Hoogerbrugge; Iris D. Nagtegaal; Marjolijn J. L. Ligtenberg

Lynch syndrome is caused by germline mutations in the mismatch repair (MMR) genes. Tumors are characterized by microsatellite instability (MSI). However, a considerable number of MSI-positive tumors have no known molecular mechanism of development. By using Sanger and ion semiconductor sequencing, 25 MSI-positive tumors were screened for somatic mutations and loss of heterozygosity in mutL homolog 1 (MLH1) and mutS homolog 2 (MSH2). In 13 of 25 tumors (8 MLH1-deficient and 5 MSH2-deficient tumors), we identified 2 somatic mutations in these genes. We conclude that 2 acquired events explain the MMR-deficiency in more than 50% of the MMR-deficient tumors without causal germline mutations or promoter methylation.


Genes, Chromosomes and Cancer | 2009

Germline hypermethylation of MLH1 and EPCAM deletions are a frequent cause of Lynch syndrome

Renée C. Niessen; Robert M. W. Hofstra; Helga Westers; Marjolijn J. L. Ligtenberg; Krista Kooi; Paul O. J. Jager; Marloes L. de Groote; Trijnie Dijkhuizen; Maran J. W. Olderode-Berends; Harry Hollema; Jan H. Kleibeuker; Rolf H. Sijmons

It was shown that Lynch syndrome can be caused by germline hypermethylation of the MLH1 and MSH2 promoters. Furthermore, it has been demonstrated very recently that germline deletions of the 3′ region of EPCAM cause transcriptional read‐through which results in silencing of MSH2 by hypermethylation. We wanted to determine the prevalence of germline MLH1 promoter hypermethylation and of germline and somatic MSH2 promoter hypermethylation in a large group of Lynch syndrome‐suspected patients. From a group of 331 Lynch Syndrome‐suspected patients we selected cases, who had no germline MLH1, MSH2, or MSH6 mutation and whose tumors showed loss of MLH1 or MSH2, or, if staining was unavailable, had a tumor with microsatellite instability. Methylation assays were performed to test these patients for germline MLH1 and/or MSH2 promoter hypermethylation. Two patients with germline MLH1 promoter hypermethylation and no patients with germline MSH2 promoter hypermethylation were identified. In the subgroup screened for germline MSH2 promoter hypermethylation, we identified 3 patients with somatic MSH2 promoter hypermethylation in their tumors, which was caused by a germline EPCAM deletion. In the group of 331 Lynch Syndrome‐suspected patients, the frequencies of germline MLH1 promoter hypermethylation and somatic MSH2 promoter hypermethylation caused by germline EPCAM deletions are 0.6 and 0.9%, respectively. These mutations, therefore, seem to be rather infrequent. However, the contribution of germline MLH1 hypermethylation and EPCAM deletions to the genetically proven Lynch syndrome cases in this cohort is very high. Previously 27 pathogenic mutations were identified; the newly identified mutations now represent 16% of all mutations.


Breast Cancer Research and Treatment | 2009

Prediction of BRCA1-association in hereditary non-BRCA1/2 breast carcinomas with array-CGH.

Simon A. Joosse; Erik H. van Beers; Ivon H. G. Tielen; Hugo M. Horlings; Johannes L. Peterse; Nicoline Hoogerbrugge; Marjolijn J. L. Ligtenberg; Lodewyk F. A. Wessels; Priscilla Axwijk; Senno Verhoef; Frans B. L. Hogervorst; Petra M. Nederlof

Background While new defects in BRCA1 are still being found, it is unclear whether current breast cancer diagnostics misses many BRCA1-associated cases. A reliable test that is able to indicate the involvement of BRCA1 deficiency in cancer genesis could support decision making in genetic counselling and clinical management. To find BRCA1-specific markers and explore the effectiveness of the current diagnostic strategy, we designed a classification method, validated it and examined whether we could find BRCA1-like breast tumours in a group of patients initially diagnosed as non-BRCA1/2 mutation carriers. Methods A classifier was built based on array-CGH profiles of 18 BRCA1-related and 32 control breast tumours, and validated on independent sets of 16 BRCA1-related and 16 control breast carcinomas. Subsequently, we applied the classifier to 48 breast tumours of patients from Hereditary Breast and Ovarian Cancer (HBOC) families in whom no germ line BRCA1/BRCA2 mutations were identified. Results The classifier showed an accuracy of 91% when applied to the validation sets. In 48 non-BRCA1/2 patients, only two breast tumours presented a BRCA1-like CGH profile. Additional evidence for BRCA1 dysfunction was found in one of these tumours. Conclusion We here describe the specific chromosomal aberrations in BRCA1-related breast carcinomas. We developed a predictive genetic test for BRCA1-association and show that BRCA1-related tumours can still be identified in HBOC families after routine DNA diagnostics.


Nature Genetics | 2015

A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer

Robbert D.A. Weren; Marjolijn J. L. Ligtenberg; C. Marleen Kets; Richarda M. de Voer; Eugène T P Verwiel; Liesbeth Spruijt; Wendy A. G. van Zelst-Stams; Marjolijn C.J. Jongmans; Christian Gilissen; Jayne Y. Hehir-Kwa; Alexander Hoischen; Jay Shendure; Evan A. Boyle; Eveline J. Kamping; Iris D. Nagtegaal; Bastiaan Tops; Fokko M. Nagengast; Ad Geurts van Kessel; J. Han van Krieken; Roland P. Kuiper; Nicoline Hoogerbrugge

The genetic cause underlying the development of multiple colonic adenomas, the premalignant precursors of colorectal cancer (CRC), frequently remains unresolved in patients with adenomatous polyposis. Here we applied whole-exome sequencing to 51 individuals with multiple colonic adenomas from 48 families. In seven affected individuals from three unrelated families, we identified a homozygous germline nonsense mutation in the base-excision repair (BER) gene NTHL1. This mutation was exclusively found in a heterozygous state in controls (minor allele frequency of 0.0036; n = 2,329). All three families showed recessive inheritance of the adenomatous polyposis phenotype and progression to CRC in at least one member. All three affected women developed an endometrial malignancy or premalignancy. Genetic analysis of three carcinomas and five adenomas from different affected individuals showed a non-hypermutated profile enriched for cytosine-to-thymine transitions. We conclude that a homozygous loss-of-function germline mutation in the NTHL1 gene predisposes to a new subtype of BER-associated adenomatous polyposis and CRC.


Journal of Clinical Oncology | 2003

Toward New Strategies to Select Young Endometrial Cancer Patients for Mismatch Repair Gene Mutation Analysis

Maran J.W. Berends; Ying Wu; Rolf H. Sijmons; Tineke van der Sluis; Wietske Boersmavan Ek; Marjolijn J. L. Ligtenberg; Neeltje Arts; Klaske A. ten Hoor; Jan H. Kleibeuker; Elisabeth G.E. de Vries; Marian J.E. Mourits; Harry Hollema; Charles H.C.M. Buys; Robert M. W. Hofstra; Ate G.J. van der Zee

PURPOSE To determine the frequency of mismatch repair (MMR) gene germline mutations in endometrial cancer patients who were diagnosed at less than 50 years of age; to relate the presence of mutations to family history, histopathologic data, presence of tumor microsatellite instability (MSI), and immunostaining; and to formulate criteria for genetic testing in these patients. PATIENTS AND METHODS Endometrial cancer patients (N = 58), who were diagnosed at less than 50 years of age, were included and questioned about their family history. Mutation analysis of the MLH1, MSH2, and MSH6 genes was performed (denaturing gradient gel electrophoresis and sequence analysis to detect small mutations and multiplex ligation-dependent probe amplification to detect large deletions or duplications). For MSI analysis, five consensus markers were used, and immunostaining of the three MMR proteins was performed. RESULTS In five of 22 patients with a positive first-degree family history for hereditary nonpolyposis colorectal cancer (HNPCC)-related cancers, pathogenic germline mutations were found (one MLH1, three MSH2, and one MSH6). Four mutation carriers belonged to families fulfilling the revised Amsterdam criteria. No mutations were found in the 35 patients without such family history (P =.006). MSI was detected in 20 of 57 cancers, among which four were from mutation carriers. In 23 of 51 cancers, one or more MMR protein was absent; in all five mutation carriers, immunostaining indicated the involved MMR gene. CONCLUSION In 23% of the young endometrial cancer patients with at least one first-degree relative with an HNPCC-related cancer, an MMR gene mutation was detected. Therefore, presence of an HNPCC-related cancer in a first-degree relative seems to be an important selection criterion for mutation analysis. Subsequent immunostaining of MMR proteins will point to the gene(s) that should be analyzed.

Collaboration


Dive into the Marjolijn J. L. Ligtenberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland P. Kuiper

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Han van Krieken

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eveline J. Kamping

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Iris D. Nagtegaal

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Bastiaan Tops

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge