Marjorie A. Oettinger
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marjorie A. Oettinger.
Cell | 1989
David G. Schatz; Marjorie A. Oettinger; David Baltimore
The RAG-1 (recombination activating gene-1) genomic locus, which activates V(D)J recombination when introduced into NIH 3T3 fibroblasts, was isolated by serial genomic transfections of oligonucleotide-tagged DNA. A genomic walk spanning 55 kb yielded a RAG-1 genomic probe that detects a single 6.6-7.0 kb mRNA species in transfectants and pre-B and pre-T cells. RAG-1 genomic and cDNA clones were biologically active when introduced into NIH 3T3 cells. Nucleotide sequencing of human and mouse RAG-1 cDNA clones predicts 119 kd proteins of 1043 and 1040 amino acids, respectively, with 90% sequence identity. RAG-1 has been conserved between species that carry out V(D)J recombination, and its pattern of expression correlates exactly with the pattern of expression of V(D)J recombinase activity. RAG-1 may activate V(D)J recombination indirectly, or it may encode the V(D)J recombinase itself.
Science | 1995
Cordula U. Kirchgessner; Ck Patil; Jw Evans; Ca Cuomo; Laura M. Fried; T Carter; Marjorie A. Oettinger; Jm Brown
Severe combined immunodeficient (SCID) mice are deficient in a recombination process utilized in both DNA double-strand break repair and in V(D)J recombination. The phenotype of these mice involves both cellular hypersensitivity to ionizing radiation and a lack of B and T cell immunity. The catalytic subunit of DNA-dependent protein kinase, p350, was identified as a strong candidate for the murine gene SCID. Both p350 and a gene complementing the SCID defect colocalize to human chromosome 8q11. Chromosomal fragments expressing p350 complement the SCID phenotype, and p350 protein levels are greatly reduced in cells derived from SCID mice compared to cells from wild-type mice.
Molecular Cell | 2001
Mark O'Driscoll; Karen Cerosaletti; Pierre M. Girard; Markus Stumm; Boris Kysela; Betsy Hirsch; Andrew R. Gennery; Susan E. Palmer; Jörg Seidel; Richard A. Gatti; Raymonda Varon; Marjorie A. Oettinger; Heidemarie Neitzel; Penny A. Jeggo; Patrick Concannon
DNA ligase IV functions in DNA nonhomologous end-joining and V(D)J recombination. Four patients with features including immunodeficiency and developmental and growth delay were found to have mutations in the gene encoding DNA ligase IV (LIG4). Their clinical phenotype closely resembles the DNA damage response disorder, Nijmegen breakage syndrome (NBS). Some of the mutations identified in the patients directly disrupt the ligase domain while others impair the interaction between DNA ligase IV and Xrcc-4. Cell lines from the patients show pronounced radiosensitivity. Unlike NBS cell lines, they show normal cell cycle checkpoint responses but impaired DNA double-strand break rejoining. An unexpected V(D)J recombination phenotype is observed involving a small decrease in rejoining frequency coupled with elevated imprecision at signal junctions.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Huck-Hui Ng; David N. Ciccone; Katrina B. Morshead; Marjorie A. Oettinger; Kevin Struhl
Methylation of lysine-79 (K79) within the globular domain of histone H3 by Dot1 methylase is important for transcriptional silencing and for association of the Sir silencing proteins in yeast. Here, we show that the level of H3-K79 methylation is low at all Sir-dependent silenced loci but not at other transcriptionally repressed regions. Hypomethylation of H3-K79 at the telomeric and silent mating-type loci, but not the ribosomal DNA, requires the Sir proteins. Overexpression of Sir3 concomitantly extends the domain of Sir protein association and H3-K79 hypomethylation at telomeres. In mammalian cells, H3-K79 methylation is found at loci that are active for V(D)J recombination, but not at recombinationally inactive loci that are heterochromatic. These results suggest that H3-K79 methylation is an evolutionarily conserved marker of active chromatin regions, and that silencing proteins block the ability of Dot1 to methylate histone H3. Further, they suggest that Sir proteins preferentially bind chromatin with hypomethylated H3-K79 and then block H3-K79 methylation. This positive feedback loop, and the reverse loop in which H3-K79 methylation weakens Sir protein association and leads to further methylation, suggests a model for position-effect variegation.
Cell | 1991
Jerold Chun; David G. Schatz; Marjorie A. Oettinger; Rudolf Jaenisch; David Baltimore
The recombination activating genes, RAG-1 and RAG-2, are likely to encode components of the V(D)J site-specific recombination machinery. We report here the detection of low levels of the RAG-1 transcript in the murine central nervous system by polymerase chain reaction, in situ hybridization, and Northern blot analyses. In contrast, an authentic RAG-2 transcript could not be detected reproducibly in the central nervous system. The RAG-1 transcript was found to be widespread in embryonic and postnatal neurons, with transcription being most apparent in regions of the postnatal brain with a high neuronal cell density (the cerebellum and the hippocampal formation). The results suggest that RAG-1 functions in neurons, where its role might be to recombine elements of the neuronal genome site-specifically, or to prevent detrimental alterations of the genome in these long-lived cells.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Katrina B. Morshead; David N. Ciccone; Sean D. Taverna; C. David Allis; Marjorie A. Oettinger
In the earliest stages of antigen receptor assembly, D and J segments of the Ig heavy chain and T cell receptor β loci are recombined in B and T cells, respectively, whereas the V segments are not. Distinct distribution patterns of various histone modifications and the nucleosome-remodeling factor BRG1 are found at “active” (DJ) and “inactive” (V) regions. Striking “hotspots” of histone H3 dimethylated at lysine 4 (di-Me H3-K4) are localized at the ends of the active DJ domains of both the Ig heavy chain and T cell receptor β loci. BRG1 is not localized to specific sequences, as it is with transcriptional initiation, but rather associates with the entire active locus in a pattern that mirrors acetylation of histone H3. Within some inactive loci marked by H3-K9 dimethylation, two distinct levels of methylation are found in a nonrandom gene-segment-specific pattern. We suggest that the hotspots of di-Me H3-K4 are important marks for locus accessibility. The specific patterns of modification imply that the regulation of V(D)J recombination involves recruitment of specific methyltransferases in a localized manner.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Santiago Ramón-Maiques; Alex J. Kuo; Dylan Carney; Adam G. W. Matthews; Marjorie A. Oettinger; Or Gozani; Wei Yang
Recombination activating gene (RAG) 1 and RAG2 together catalyze V(D)J gene rearrangement in lymphocytes as the first step in the assembly and maturation of antigen receptors. RAG2 contains a plant homeodomain (PHD) near its C terminus (RAG2-PHD) that recognizes histone H3 methylated at lysine 4 (H3K4me) and influences V(D)J recombination. We report here crystal structures of RAG2-PHD alone and complexed with five modified H3 peptides. Two aspects of RAG2-PHD are unique. First, in the absence of the modified peptide, a peptide N-terminal to RAG2-PHD occupies the substrate-binding site, which may reflect an autoregulatory mechanism. Second, in contrast to other H3K4me3-binding PHD domains, RAG2-PHD substitutes a carboxylate that interacts with arginine 2 (R2) with a Tyr, resulting in binding to H3K4me3 that is enhanced rather than inhibited by dimethylation of R2. Five residues involved in histone H3 recognition were found mutated in severe combined immunodeficiency (SCID) patients. Disruption of the RAG2-PHD structure appears to lead to the absence of T and B lymphocytes, whereas failure to bind H3K4me3 is linked to Omenn Syndrome. This work provides a molecular basis for chromatin-dependent gene recombination and presents a single protein domain that simultaneously recognizes two distinct histone modifications, revealing added complexity in the read-out of combinatorial histone modifications.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Boris Kysela; L. A. Hanakahi; K. Manolis; Enriqueta Riballo; Markus Stumm; T. O. Harville; Stephen C. West; Marjorie A. Oettinger; Penny A. Jeggo
DNA nonhomologous end-joining (NHEJ) is the major pathway for repairing DNA double-strand breaks in mammalian cells. It also functions to carry out rearrangements at the specialized breaks introduced during V(D)J recombination. Here, we describe a patient with T−B− severe combined immunodeficiency, whose cells have defects closely resembling those of NHEJ-defective rodent cells. Cells derived from this patient show dramatic radiosensitivity, decreased double-strand break rejoining, and reduced fidelity in signal and coding joint formation during V(D)J recombination. Detailed examination indicates that the patient is defective neither in the known factors involved in NHEJ in mammals (Ku70, Ku80, DNA-dependent protein kinase catalytic subunit, Xrcc4, DNA ligase IV, or Artemis) nor in the Mre11/Rad50/Nbs1 complex, whose homologue in Saccharomyces cerevisiae functions in NHEJ. These results provide strong evidence that additional activities are crucial for NHEJ and V(D)J recombination in mammals.
Molecular Cell | 2000
Jongbum Kwon; Katrina B. Morshead; Jeffrey R. Guyon; Robert E. Kingston; Marjorie A. Oettinger
The ordered assembly of immunoglobulin and TCR genes by V(D)J recombination depends on the regulated accessibility of individual loci. We show here that the histone tails and intrinsic nucleosome structure pose significant impediments to V(D)J cleavage. However, alterations to nucleosome structure via histone acetylation or by stable hSWI/SNF-dependent remodeling greatly increase the accessibility of nucleosomal DNA to V(D)J cleavage. Moreover, acetylation and hSWI/SNF remodeling can act in concert on an individual nucleosome to achieve levels of V(D)J cleavage approaching those observed on naked DNA. These results are consistent with a model in which regulated recruitment of chromatin modifying activities is involved in mediating the lineage and stage-specific control of V(D)J recombination.
Molecular Cell | 1998
Jongbum Kwon; Anthony N. Imbalzano; Adam G. W. Matthews; Marjorie A. Oettinger
B and T cell receptor gene assembly by V(D)J recombination is tightly regulated during lymphoid development. The mechanisms involved in this regulation are poorly understood. Here we show that nucleosomal DNA is refractory to V(D)J cleavage. However, the presence of HMG1, a chromatin-associated nonhistone DNA-binding protein, stimulates V(D)J cleavage of nucleosomal templates. This HMG1 stimulation is differentially affected by the rotational or translational positioning of the recombination signal sequence on the histone octamer, with cleavage of the 12 bp spacer RSS showing sensitivity to rotational position and the 23 bp spacer RSS affected by its displacement from the dyad. These results suggest that V(D)J recombination can be modulated by controlling substrate accessibility and cleavage at the level of an individual nucleosome.