Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marjorie L. Brooks is active.

Publication


Featured researches published by Marjorie L. Brooks.


Ecological assessment of selenium in the aquatic environment. | 2010

Ecological assessment of selenium in the aquatic environment.

Peter M. Chapman; William J. Adams; Marjorie L. Brooks; Charles Delos; Samuel N. Luoma; William Maher; Harry M. Ohlendorf; Theresa S. Presser; D Shaw

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Background and Need for Workshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Workshop Purpose and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Participation and Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Workgroup Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Workgroup 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Problem formulation: Context for selenium risk assessment . . . . . . . . . . . . . . . . . . . . . 9 Selenium is a global problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Conceptual model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 How to investigate a potential selenium problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Workgroup 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Environmental partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Workgroup 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Bioaccumulation and trophic transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Workgroup 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Selenium toxicity to aquatic organisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Workgroup 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Risk characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Importance of problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Risk characterization: Unique challenges concerning selenium . . . . . . . . . . . . . . . . . . 26 Risk management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Overall Workshop Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Appendix: SETAC Pellston Workshop Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 List of Figures Figure 1 Conceptual model depicting Se dynamics and transfer in aquatic ecosystems . . . . . . . . . . . . .11 Figure 2 Hierarchy of effects across levels of biological organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Figure 3 Potential sources of Se to aquatic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Figure 4 Selenium species associated with major processes in aquatic systems . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Figure 5 Partitioning of Se among environmental compartments in a typical aquatic system. . . .16 Figure 6 Selenium enrichment and trophic transfer in aquatic food webs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Figure 7 Selenium accumulation in different species of algae, invertebrates, and fish . . . . . . . . . . . . . . . .20 Figure 8 Conceptual pathway of Se transfer in aquatic ecosystems and relative certainty with which Se concentrations in environmental compartments can be assessed in making accurate characterizations of risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 List of Tables Table 1 Assessment endpoints and measures of exposure and effect for aquatic and aquaticlinked organisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Table 2 Uncertainties and recommendations for future research pertaining to toxicity of Se species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Ecological Assessment of Selenium in the Aquatic Environment 4


Environmental Toxicology and Chemistry | 2013

ECOLOGICAL RISK ASSESSMENT IN THE CONTEXT OF GLOBAL CLIMATE CHANGE

Wayne G. Landis; Judi L. Durda; Marjorie L. Brooks; Peter M. Chapman; Charles A. Menzie; Ralph G. Stahl; Jennifer L. Stauber

Changes to sources, stressors, habitats, and geographic ranges; toxicological effects; end points; and uncertainty estimation require significant changes in the implementation of ecological risk assessment (ERA). Because of the lack of analog systems and circumstances in historically studied sites, there is a likelihood of type III error. As a first step, the authors propose a decision key to aid managers and risk assessors in determining when and to what extent climate change should be incorporated. Next, when global climate change is an important factor, the authors recommend seven critical changes to ERA. First, develop conceptual cause–effect diagrams that consider relevant management decisions as well as appropriate spatial and temporal scales to include both direct and indirect effects of climate change and the stressor of management interest. Second, develop assessment end points that are expressed as ecosystem services. Third, evaluate multiple stressors and nonlinear responses—include the chemicals and the stressors related to climate change. Fourth, estimate how climate change will affect or modify management options as the impacts become manifest. Fifth, consider the direction and rate of change relative to management objectives, recognizing that both positive and negative outcomes can occur. Sixth, determine the major drivers of uncertainty, estimating and bounding stochastic uncertainty spatially, temporally, and progressively. Seventh, plan for adaptive management to account for changing environmental conditions and consequent changes to ecosystem services. Good communication is essential for making risk-related information understandable and useful for managers and stakeholders to implement a successful risk-assessment and decision-making process. Environ. Toxicol. Chem. 2013;32:79–92.


Estuaries and Coasts | 2012

Life Histories, Salinity Zones, and Sublethal Contributions of Contaminants to Pelagic Fish Declines Illustrated with a Case Study of San Francisco Estuary, California, USA

Marjorie L. Brooks; Erica Fleishman; Larry R. Brown; P. W. Lehman; Inge Werner; Nathaniel L. Scholz; Carys L. Mitchelmore; James R. Lovvorn; Michael L. Johnson; Daniel Schlenk; Suzanne van Drunick; James I. Drever; David M. Stoms; Alexander E. Parker; Richard C. Dugdale

Human effects on estuaries are often associated with major decreases in abundance of aquatic species. However, remediation priorities are difficult to identify when declines result from multiple stressors with interacting sublethal effects. The San Francisco Estuary offers a useful case study of the potential role of contaminants in declines of organisms because the waters of its delta chronically violate legal water quality standards; however, direct effects of contaminants on fish species are rarely observed. Lack of direct lethality in the field has prevented consensus that contaminants may be one of the major drivers of coincident but unexplained declines of fishes with differing life histories and habitats (anadromous, brackish, and freshwater). Our review of available evidence indicates that examining the effects of contaminants and other stressors on specific life stages in different seasons and salinity zones of the estuary is critical to identifying how several interacting stressors could contribute to a general syndrome of declines. Moreover, warming water temperatures of the magnitude projected by climate models increase metabolic rates of ectotherms, and can hasten elimination of some contaminants. However, for other pollutants, concurrent increases in respiratory rate or food intake result in higher doses per unit time without changes in the contaminant concentrations in the water. Food limitation and energetic costs of osmoregulating under altered salinities further limit the amount of energy available to fish; this energy must be redirected from growth and reproduction toward pollutant avoidance, enzymatic detoxification, or elimination. Because all of these processes require energy, bioenergetics methods are promising for evaluating effects of sublethal contaminants in the presence of other stressors, and for informing remediation. Predictive models that evaluate the direct and indirect effects of contaminants will be possible when data become available on energetic costs of exposure to contaminants given simultaneous exposure to non-contaminant stressors.


BioScience | 2012

A Perspective on Modern Pesticides, Pelagic Fish Declines, and Unknown Ecological Resilience in Highly Managed Ecosystems

Nathaniel L. Scholz; Erica Fleishman; Larry R. Brown; Inge Werner; Michael L. Johnson; Marjorie L. Brooks; Carys L. Mitchelmore; Daniel Schlenk

Pesticides applied on land are commonly transported by runoff or spray drift to aquatic ecosystems, where they are potentially toxic to fishes and other nontarget organisms. Pesticides add to and interact with other stressors of ecosystem processes, including surface-water diversions, losses of spawning and rearing habitats, nonnative species, and harmful algal blooms. Assessing the cumulative effects of pesticides on species or ecological functions has been difficult for historical, legal, conceptual, and practical reasons. To explore these challenges, we examine current-use (modern) pesticides and their potential connections to the abundances of fishes in the San Francisco Estuary (California). Declines in delta smelt (Hypomesus transpacificus), Chinook salmon (Oncorhynchus tshawytscha), and other species have triggered mandatory and expensive management actions in the urbanizing estuary and agriculturally productive Central Valley. Our inferences are transferable to other situations in which toxics may drive changes in ecological status and trends.


Ecological Applications | 2014

Deposit‐feeder diets in the Bering Sea: potential effects of climatic loss of sea ice‐related microalgal blooms

Christopher A. North; James R. Lovvorn; Jason M. Kolts; Marjorie L. Brooks; Lee W. Cooper; Jacqueline M. Grebmeier

Climate warming in seasonally ice-covered seas is expected to reduce the extent and duration of annual sea ice. Resulting changes in sea ice related blooms of ice algae or phytoplankton may in turn alter the timing, magnitude, or quality of organic matter inputs to the sea floor. If benthic taxa rely differently on direct consumption of settling fresh microalgae for growth and reproduction, altered blooms may lead to reorganization of deposit-feeding assemblages. To assess the potential for such changes, we examined the diets of five abundant deposit-feeders (three infaunal bivalves, a polychaete, and a brittle star) with different feeding modes over the course of the spring bloom in May–June 2007 in the north-central Bering Sea (30–90 m depth). Short-term data from gut contents reflected feeding modes, with the bivalves Macoma calcarea, Ennucula tenuis, and Nuculana radiata, and the brittle star Ophiura sarsi, responding more quickly to deposition of fresh algae than did the head-down polychaete Pectinaria hyperborea. Fatty acid biomarkers also indicated rapid ingestion of settling algae by the bivalves (especially Macoma) and the brittle star, while Pectinaria continued to ingest mainly bacteria. Fatty acid biomarkers did not indicate any unique dietary importance of ice algae released from melting ice. Longer-term inference from stable isotopes suggested that fresh microalgae contributed little to overall carbon assimilated by any of these species. Instead, deposit-feeders appeared to select a consistent fraction from the pool of sediment organic matter, probably heterotrophic microbes, microbial products, and reworked phytodetritus that form a longer-term sediment “food bank.” Redistribution of settled organic matter via scouring and accumulation by currents, as well as the multi-year life spans of macroinvertebrates, may further overwhelm effects of short-term variations in the timing, magnitude, and dispersion of blooms in the water column. More diet data are needed from midsummer to account for any lag in assimilation of fresh microalgae at these cold temperatures. Nevertheless, our results suggest that if annual sea ice cover is reduced, increased production of phytoplankton during longer ice-free periods could replace inputs of ice-associated microalgae to the sediment food bank used by deposit-feeders.


Environmental Toxicology and Chemistry | 2015

Effects of pyrethroid insecticides in urban runoff on Chinook salmon, steelhead trout, and their invertebrate prey

Donald P. Weston; Daniel Schlenk; Navneet Riar; Michael J. Lydy; Marjorie L. Brooks

Pyrethroid insecticides can affect salmonids either indirectly through toxicity to their prey or directly by toxicity to the fish themselves. In support of a study on pyrethroid impacts to Chinook salmon and steelhead trout in the American River (Sacramento, California, USA), 96-h median effective concentration (EC50) and median lethal concentration (LC50) values for the pyrethroid bifenthrin were determined for taxa not traditionally used for toxicity testing but of interest as salmonid prey, including a chironomid, caddisflies, mayflies, and stoneflies. A laboratory was constructed on the banks of the American River to expose macroinvertebrates, Chinook salmon, and steelhead trout to flow-through river water containing urban runoff during storm events. Bifenthrin from urban runoff was found in river water following 5 rain events, reaching 14.6 ng/L. Mortality to the exposed salmonids was not observed, and sublethal effects were not seen in vitellogenin or sex steroid levels. Indirect effects via toxicity to salmonid prey are possible. Mortality to Hyalella azteca, a potential prey, was observed in every event tested, and peak bifenthrin concentrations were comparable to the 96-h EC50 of the caddisfly, Hydropsyche sp., the most important prey species on a biomass basis for American River Chinook salmon. The other invertebrates tested had EC50s exceeding bifenthrin concentrations seen in the American River, though could potentially be at risk at concentrations previously reported in smaller urban tributaries. Environ Toxicol Chem 2015;34:649-657.


Environmental Toxicology and Chemistry | 2016

Metal‐mediated climate susceptibility in a warming world: Larval and latent effects on a model amphibian

Tyler A. Hallman; Marjorie L. Brooks

Although sophisticated models predict the effects of future temperatures on ectotherms, few also address how ubiquitous sublethal contaminants alter an organisms response to thermal stress. In ectotherms, higher metabolic rates from warming temperatures can beneficially speed metabolism and development. If compounded by chronic, sublethal pollution, additional resource demands for elimination or detoxification may limit their ability to cope with rising temperatures-the toxicant-induced climate susceptibility hypothesis. In outdoor bioassays, using natural lake water as the background, the authors investigated the development of a model ectotherm in 6 levels of Cd, Cu, and Pb mixtures and 3 thermal regimes of diel temperature fluctuations: ambient, +1.5 °C, and +2.5 °C. Warming had no effect on wild-caught Copes gray tree frog (Hyla chrysoscelis) until metals concentrations were approximately 10-fold of their bioavailable chronic criterion unit (sums of bioavailable fractions of chronic criteria concentrations). In treatments with ≥10 bioavailable chronic criterion units and +1.5 °C, growth increased. Conversely, in treatments with 28 bioavailable chronic criterion units and maximal +2.5 °C warming, growth declined and the body condition of postmetamorphic juveniles at 20 d was 34% lower than that of juveniles from background conditions (lake water at ambient temperatures). These findings suggest toxicant-induced climate susceptibility with long-term latent effects on the juvenile life stage. Sublethal contaminants can intensify the impact on aquatic ectotherms at the most conservative levels of predicted global warming over the next century. Environ Toxicol Chem 2016;35:1872-1882.


Environmental Toxicology and Chemistry | 2007

Dissolved fraction of standard laboratory cladoceran food alters toxicity of waterborne silver to Ceriodaphnia dubia

Jason M. Kolts; Marjorie L. Brooks; Brittney D. Cantrell; Connie J. Boese; Russell A. Bell; Joseph S. Meyer

The biotic ligand model (BLM) for the acute toxicity of cationic metals to aquatic organisms incorporates the toxicity-modifying effects of dissolved organic matter (DOM), but the default parameterization (i.e., assuming 10% of DOM is humic acid) does not differentiate DOM from different sources. We exposed a cladoceran (Ceriodaphnia dubia) to Ag in the presence of DOM from filtered YCT (standard yeast–Cerophyll®–trout chow food recommended by the U.S. Environmental Protection Agency [EPA] for cladocerans), from the Suwannee River (GA, USA; relatively little anthropogenic input), and from the Desjardins Canal in Hamilton (ON, Canada; receives treated municipal wastewater effluent). In all three treatments, the dissolved organic carbon (DOC) concentration was 2 mg/L (the concentration following addition of YCT slurry at the U.S. EPA–recommended volume ratio). The average 48-h median effects concentration (EC50) ratios for dissolved Ag in the presence and absence of DOM [i.e., (EC50 with DOM)/(EC50 without DOM)] were as follows: Suwannee River, 1.6; Desjardins Canal, 2.2; and YCT filtrate, 26.8. Therefore, YCT filtrate provided much more protection against Ag toxicity than that provided by DOM from the surface waters. The major spectral characteristic that differentiated YCT filtrate from the other two types of DOM was a strong tryptophan peak in the excitation–emission matrix for YCT. These results have important implications for interpreting Ag toxicity tests in which organisms are fed YCT, and they suggest BLM-calculated toxicity predictions might be improved by incorporating specific chemical constituents or surrogate indices of DOM. Another component of the protective effect against Ag toxicity, however, might be that the dissolved fraction of YCT served as an energy and/or nutrient source for C. dubia.


Integrated Environmental Assessment and Management | 2011

Predictive modeling of selenium accumulation in brine shrimp in saline environments

Earl R. Byron; Harry M. Ohlendorf; Aaron D. Redman; William J. Adams; Brad Marden; Martin Grosell; Marjorie L. Brooks

Great Salt Lake, Utah, is a large, terminal, hypersaline lake consisting of a northern more saline arm and a southern arm that is less saline. The southern arm supports a seasonally abundant fauna of low diversity consisting of brine shrimp (Artemia franciscana), 7 species of brine flies, and multiple species of algae. Although fish cannot survive in the main body of the lake, the lake is highly productive, and brine shrimp and brine fly populations support large numbers of migratory waterfowl and shorebirds, as well as resident waterfowl, shorebirds, and gulls. Selenium and other trace elements, metals, and nutrients are contaminants of concern for the lake because of their concentrations in municipal and industrial outfalls and runoff from local agriculture and the large urban area of Salt Lake City. As a consequence, the State of Utah recently recommended water quality standards for Se for the southern arm of Great Salt Lake based on exposure and risk to birds. The tissue-based recommendations (as measured in bird eggs) were based on the understanding that Se toxicity is predominately expressed through dietary exposure, and that the breeding shorebirds, waterfowl, and gulls of the lake are the receptors of most concern. The bird egg-based recommended standards for Se require a model to link bird egg Se concentrations to their dietary concentrations and water column values. This study analyzes available brine shrimp tissue Se data from a variety of sources, along with waterborne and water particulate (potential brine shrimp diet) Se concentrations, in an attempt to develop a model to predict brine shrimp Se concentrations from the Se concentrations in surrounding water. The model can serve as a tool for linking the tissue-based water quality standards of a key dietary item to waterborne concentrations. The results were compared to other laboratory and field-based models to predict brine shrimp tissue Se concentrations from ambient water and their diet. No significant relationships were found between brine shrimp and their dietary Se, as measured by seston concentrations. The final linear and piecewise regression models showed significant positive relationships between waterborne and brine shrimp tissue Se concentrations but with a very weak predictive ability for waterborne concentrations<10 µg/L.


Archive | 2010

Selenium Toxicity to Aquatic Organisms

David M. Janz; David K. DeForest; Marjorie L. Brooks; Peter M. Chapman; Guy Gilron; Dale Hoff; William A. Hopkins; Dennis McIntyre; Christopher A. Mebane; Vincent Palace; Joseph Skorupa; Mark Wayland

Collaboration


Dive into the Marjorie L. Brooks's collaboration.

Top Co-Authors

Avatar

James R. Lovvorn

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Schlenk

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee W. Cooper

University of Maryland Center for Environmental Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge