Marjorie R. Lundgren
University of Sheffield
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marjorie R. Lundgren.
Journal of Experimental Botany | 2014
Marjorie R. Lundgren; Colin P. Osborne; Pascal-Antoine Christin
C4 photosynthesis is a complex physiological adaptation that confers greater productivity than the ancestral C3 photosynthetic type in environments where photorespiration is high. It evolved in multiple lineages through the coordination of anatomical and biochemical components, which concentrate CO2 at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). In most C4 plants, the CO2-concentrating mechanism is achieved via the confinement of Rubisco to bundle-sheath cells, into which CO2 is biochemically pumped from surrounding mesophyll cells. The C4 biochemical pathway relies on a specific suite of leaf functional properties, often referred to as Kranz anatomy. These include the existence of discrete compartments differentially connected to the atmosphere, a close contact between these compartments, and a relatively large compartment to host the Calvin cycle. In this review, we use a quantitative dataset for grasses (Poaceae) and examples from other groups to isolate the changes in anatomical characteristics that generate these functional properties, including changes in the size, number, and distribution of different cell types. These underlying anatomical characteristics vary among C4 origins, as similar functions emerged via different modifications of anatomical characteristics. In addition, the quantitative characteristics of leaves all vary continuously across C3 and C4 taxa, resulting in C4-like values in some C3 taxa. These observations suggest that the evolution of C4-suitable anatomy might require relatively few changes in plant lineages with anatomical predispositions. Furthermore, the distribution of anatomical traits across C3 and C4 taxa has important implications for the functional diversity observed among C4 lineages and for the approaches used to identify genetic determinants of C4 anatomy.
Ecology Letters | 2015
Marjorie R. Lundgren; Guillaume Besnard; Brad S. Ripley; Caroline E. R. Lehmann; David S. Chatelet; Ralf G. Kynast; Mary Namaganda; Maria S. Vorontsova; Russell C. Hall; John Elia; Colin P. Osborne; Pascal-Antoine Christin
Adaptation to changing environments often requires novel traits, but how such traits directly affect the ecological niche remains poorly understood. Multiple plant lineages have evolved C4 photosynthesis, a combination of anatomical and biochemical novelties predicted to increase productivity in warm and arid conditions. Here, we infer the dispersal history across geographical and environmental space in the only known species with both C4 and non-C4 genotypes, the grass Alloteropsis semialata. While non-C4 individuals remained confined to a limited geographic area and restricted ecological conditions, C4 individuals dispersed across three continents and into an expanded range of environments, encompassing the ancestral one. This first intraspecific investigation of C4 evolutionary ecology shows that, in otherwise similar plants, C4 photosynthesis does not shift the ecological niche, but broadens it, allowing dispersal into diverse conditions and over long distances. Over macroevolutionary timescales, this immediate effect can be blurred by subsequent specialisation towards more extreme niches.
Current Biology | 2016
Sam Amsbury; Lee Hunt; Nagat S. Elhaddad; Alice Baillie; Marjorie R. Lundgren; Yves Verhertbruggen; Henrik Vibe Scheller; J. Paul Knox; Andrew Fleming; Julie E. Gray
Summary Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape [1]. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils [2], our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins. We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO2, substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology.
Plant Cell and Environment | 2016
Marjorie R. Lundgren; Pascal-Antoine Christin; Emmanuel Gonzalez Escobar; Brad S. Ripley; Guillaume Besnard; Christine M. Long; Paul W. Hattersley; Roger P. Ellis; Richard C. Leegood; Colin P. Osborne
C4 photosynthesis is a complex trait resulting from a series of anatomical and biochemical modifications to the ancestral C3 pathway. It is thought to evolve in a stepwise manner, creating intermediates with different combinations of C4 -like components. Determining the adaptive value of these components is key to understanding how C4 photosynthesis can gradually assemble through natural selection. Here, we decompose the photosynthetic phenotypes of numerous individuals of the grass Alloteropsis semialata, the only species known to include both C3 and C4 genotypes. Analyses of δ(13) C, physiology and leaf anatomy demonstrate for the first time the existence of physiological C3 -C4 intermediate individuals in the species. Based on previous phylogenetic analyses, the C3 -C4 individuals are not hybrids between the C3 and C4 genotypes analysed, but instead belong to a distinct genetic lineage, and might have given rise to C4 descendants. C3 A. semialata, present in colder climates, likely represents a reversal from a C3 -C4 intermediate state, indicating that, unlike C4 photosynthesis, evolution of the C3 -C4 phenotype is not irreversible.
Molecular Ecology | 2016
Jill Olofsson; Matheus E. Bianconi; Guillaume Besnard; Luke T. Dunning; Marjorie R. Lundgren; Hélène Holota; Maria S. Vorontsova; Oriane Hidalgo; Ilia J. Leitch; Patrik Nosil; Colin P. Osborne; Pascal-Antoine Christin
Physiological novelties are often studied at macro‐evolutionary scales such that their micro‐evolutionary origins remain poorly understood. Here, we test the hypothesis that key components of a complex trait can evolve in isolation and later be combined by gene flow. We use C4 photosynthesis as a study system, a derived physiology that increases plant productivity in warm, dry conditions. The grass Alloteropsis semialata includes C4 and non‐C4 genotypes, with some populations using laterally acquired C4‐adaptive loci, providing an outstanding system to track the spread of novel adaptive mutations. Using genome data from C4 and non‐C4 A. semialata individuals spanning the species’ range, we infer and date past migrations of different parts of the genome. Our results show that photosynthetic types initially diverged in isolated populations, where key C4 components were acquired. However, rare but recurrent subsequent gene flow allowed the spread of adaptive loci across genetic pools. Indeed, laterally acquired genes for key C4 functions were rapidly passed between populations with otherwise distinct genomic backgrounds. Thus, our intraspecific study of C4‐related genomic variation indicates that components of adaptive traits can evolve separately and later be combined through secondary gene flow, leading to the assembly and optimization of evolutionary innovations.
New Phytologist | 2016
Chandra Bellasio; Marjorie R. Lundgren
In C4 photosynthesis CO2 assimilation and reduction are typically coordinated across mesophyll (M) and bundle sheath (BS) cells, respectively. This system consequently requires sufficient light to reach BS to generate enough ATP to allow ribulose-1,5-bisphosphate (RuBP) regeneration in BS. Leaf anatomy influences BS light penetration and therefore constrains C4 cycle functionality. Using an absorption scattering model (coded in Excel, and freely downloadable) we simulate light penetration profiles and rates of ATP production in BS across the C3 , C3 -C4 and C4 anatomical continua. We present a trade-off for light absorption between BS pigment concentration and space allocation. C3 BS anatomy limits light absorption and benefits little from high pigment concentrations. Unpigmented BS extensions increase BS light penetration. C4 and C3 -C4 anatomies have the potential to generate sufficient ATP in the BS, whereas typical C3 anatomy does not, except some C3 taxa closely related to C4 groups. Insufficient volume of BS, relative to M, will hamper a C4 cycle via insufficient BS light absorption. Thus, BS ATP production and RuBP regeneration, coupled with increased BS investments, allow greater operational plasticity. We propose that larger BS in C3 lineages may be co-opted for C3 -C4 and C4 biochemistry requirements.
Journal of Experimental Botany | 2017
Marjorie R. Lundgren; Pascal-Antoine Christin
Abstract C4 photosynthesis is a physiological innovation involving several anatomical and biochemical components that emerged recurrently in flowering plants. This complex trait evolved via a series of physiological intermediates, broadly termed ‘C3‐C4’, which have been widely studied to understand C4 origins. While this research program has focused on biochemistry, physiology, and anatomy, the ecology of these intermediates remains largely unexplored. Here, we use global occurrence data and local habitat descriptions to characterize the niches of multiple C3‐C4 lineages, as well as their close C3 and C4 relatives. While C3‐C4 taxa tend to occur in warm climates, their abiotic niches are spread along other dimensions, making it impossible to define a universal C3‐C4 niche. Phylogeny‐based comparisons suggest that, despite shifts associated with photosynthetic types, the precipitation component of the C3‐C4 niche is particularly lineage specific, being highly correlated with that of closely related C3 and C4 taxa. Our large‐scale analyses suggest that C3‐C4 lineages converged toward warm habitats, which may have facilitated the transition to C4 photosynthesis, effectively bridging the ecological gap between C3 and C4 plants. The intermediates retained some precipitation aspects of their C3 ancestors’ habitat, and likely transmitted them to their C4 descendants, contributing to the diversity among C4 lineages seen today.
Evolution | 2017
Luke T. Dunning; Marjorie R. Lundgren; Jose J Moreno-Villena; Mary Namaganda; Erika J. Edwards; Patrik Nosil; Colin P. Osborne; Pascal-Antoine Christin
The origins of novel traits are often studied using species trees and modeling phenotypes as different states of the same character, an approach that cannot always distinguish multiple origins from fewer origins followed by reversals. We address this issue by studying the origins of C4 photosynthesis, an adaptation to warm and dry conditions, in the grass Alloteropsis. We dissect the C4 trait into its components, and show two independent origins of the C4 phenotype via different anatomical modifications, and the use of distinct sets of genes. Further, inference of enzyme adaptation suggests that one of the two groups encompasses two transitions to a full C4 state from a common ancestor with an intermediate phenotype that had some C4 anatomical and biochemical components. Molecular dating of C4 genes confirms the introgression of two key C4 components between species, while the inheritance of all others matches the species tree. The number of origins consequently varies among C4 components, a scenario that could not have been inferred from analyses of the species tree alone. Our results highlight the power of studying individual components of complex traits to reconstruct trajectories toward novel adaptations.
Plant Journal | 2017
Christoph A. Lehmeier; Radoslaw Pajor; Marjorie R. Lundgren; Andrew W. Mathers; Jen Sloan; Marion Bauch; Alice Mitchell; Chandra Bellasio; Adam P. Green; Daniel Bouyer; Arp Schnittger; Craig J. Sturrock; Colin P. Osborne; Stephen A. Rolfe; Sacha J. Mooney; Andrew Fleming
Summary The pattern of cell division, growth and separation during leaf development determines the pattern and volume of airspace in a leaf. The resulting balance of cellular material and airspace is expected to significantly influence the primary function of the leaf, photosynthesis, and yet the manner and degree to which cell division patterns affect airspace networks and photosynthesis remains largely unexplored. In this paper we investigate the relationship of cell size and patterning, airspace and photosynthesis by promoting and repressing the expression of cell cycle genes in the leaf mesophyll. Using microCT imaging to quantify leaf cellular architecture and fluorescence/gas exchange analysis to measure leaf function, we show that increased cell density in the mesophyll of Arabidopsis can be used to increase leaf photosynthetic capacity. Our analysis suggests that this occurs both by increasing tissue density (decreasing the relative volume of airspace) and by altering the pattern of airspace distribution within the leaf. Our results indicate that cell division patterns influence the photosynthetic performance of a leaf, and that it is possible to engineer improved photosynthesis via this approach.
Botany Letters | 2017
Luke T. Dunning; Anne Lise Liabot; Jill Olofsson; Emma K. Smith; Maria S. Vorontsova; Guillaume Besnard; Kimberley J. Simpson; Marjorie R. Lundgren; Eda Addicott; Rachael V. Gallagher; Yingying Chu; R. Toby Pennington; Pascal-Antoine Christin; Caroline E. R. Lehmann
Abstract Tropical savannas cover over 20% of land surface. They sustain a high diversity of mammalian herbivores and promote frequent fires, both of which are dependent on the underlying grass composition. These habitats are typically dominated by relatively few taxa, and the evolutionary origins of the dominant grass species are largely unknown. Here, we trace the origins of the genus Themeda, which contains a number of widespread grass species dominating tropical savannas. Complete chloroplast genomes were assembled for seven samples and supplemented with chloroplast and nuclear ITS markers for 71 samples representing 18 of the 27 Themeda species. Phylogenetic analysis supports a South Asian origin for both the genus and the widespread dominant T. triandra. This species emerged ~1.5 Ma from a group that had lived in the savannas of Asia for several million years. It migrated to Australia ~1.3 Ma and to mainland Africa ~0.5 Ma, where it rapidly spread in pre-existing savannas and displaced other species. Themeda quadrivalvis, the second most widespread Themeda species, is nested within T. triandra based on whole chloroplast genomes, and may represent a recent evolution of an annual growth form that is otherwise almost indistinguishable from T. triandra. The recent spread and modern-day dominance of T. triandra highlight the dynamism of tropical grassy biomes over millennial time-scales that has not been appreciated, with dramatic shifts in species dominance in recent evolutionary times. The ensuing species replacements likely had profound effects on fire and herbivore regimes across tropical savannas.