Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark A. Batzer is active.

Publication


Featured researches published by Mark A. Batzer.


Nature Reviews Genetics | 2002

Alu repeats and human genomic diversity

Mark A. Batzer; Prescott L. Deininger

During the past 65 million years, Alu elements have propagated to more than one million copies in primate genomes, which has resulted in the generation of a series of Alu subfamilies of different ages. Alu elements affect the genome in several ways, causing insertion mutations, recombination between elements, gene conversion and alterations in gene expression. Alu-insertion polymorphisms are a boon for the study of human population genetics and primate comparative genomics because they are neutral genetic markers of identical descent with known ancestral states.


Nature Reviews Genetics | 2009

The impact of retrotransposons on human genome evolution.

Richard Cordaux; Mark A. Batzer

Their ability to move within genomes gives transposable elements an intrinsic propensity to affect genome evolution. Non-long terminal repeat (LTR) retrotransposons — including LINE-1, Alu and SVA elements — have proliferated over the past 80 million years of primate evolution and now account for approximately one-third of the human genome. In this Review, we focus on this major class of elements and discuss the many ways that they affect the human genome: from generating insertion mutations and genomic instability to altering gene expression and contributing to genetic innovation. Increasingly detailed analyses of human and other primate genomes are revealing the scale and complexity of the past and current contributions of non-LTR retrotransposons to genomic change in the human lineage.


Nature | 2011

Mapping copy number variation by population-scale genome sequencing

Ryan E. Mills; Klaudia Walter; Chip Stewart; Robert E. Handsaker; Ken Chen; Can Alkan; Alexej Abyzov; Seungtai Yoon; Kai Ye; R. Keira Cheetham; Asif T. Chinwalla; Donald F. Conrad; Yutao Fu; Fabian Grubert; Iman Hajirasouliha; Fereydoun Hormozdiari; Lilia M. Iakoucheva; Zamin Iqbal; Shuli Kang; Jeffrey M. Kidd; Miriam K. Konkel; Joshua M. Korn; Ekta Khurana; Deniz Kural; Hugo Y. K. Lam; Jing Leng; Ruiqiang Li; Yingrui Li; Chang-Yun Lin; Ruibang Luo

Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies.


American Journal of Human Genetics | 1998

Estimating African American Admixture Proportions by Use of Population-Specific Alleles

Esteban J. Parra; Amy Marcini; Joshua M. Akey; Jeremy J. Martinson; Mark A. Batzer; Richard S. Cooper; Terrence Forrester; David B. Allison; Ranjan Deka; Robert E. Ferrell; Mark D. Shriver

We analyzed the European genetic contribution to 10 populations of African descent in the United States (Maywood, Illinois; Detroit; New York; Philadelphia; Pittsburgh; Baltimore; Charleston, South Carolina; New Orleans; and Houston) and in Jamaica, using nine autosomal DNA markers. These markers either are population-specific or show frequency differences >45% between the parental populations and are thus especially informative for admixture. European genetic ancestry ranged from 6.8% (Jamaica) to 22.5% (New Orleans). The unique utility of these markers is reflected in the low variance associated with these admixture estimates (SEM 1.3%-2.7%). We also estimated the male and female European contribution to African Americans, on the basis of informative mtDNA (haplogroups H and L) and Y Alu polymorphic markers. Results indicate a sex-biased gene flow from Europeans, the male contribution being substantially greater than the female contribution. mtDNA haplogroups analysis shows no evidence of a significant maternal Amerindian contribution to any of the 10 populations. We detected significant nonrandom association between two markers located 22 cM apart (FY-null and AT3), most likely due to admixture linkage disequilibrium created in the interbreeding of the two parental populations. The strength of this association and the substantial genetic distance between FY and AT3 emphasize the importance of admixed populations as a useful resource for mapping traits with different prevalence in two parental populations.


Nature | 2010

The genome of a songbird.

Wesley C. Warren; David F. Clayton; Hans Ellegren; Arthur P. Arnold; LaDeana W. Hillier; Axel Künstner; Steve Searle; Simon White; Albert J. Vilella; Susan Fairley; Andreas Heger; Lesheng Kong; Chris P. Ponting; Erich D. Jarvis; Claudio V. Mello; Patrick Minx; Peter V. Lovell; Tarciso Velho; Margaret Ferris; Christopher N. Balakrishnan; Saurabh Sinha; Charles Blatti; Sarah E. London; Yun Li; Ya-Chi Lin; Julia M. George; Jonathan V. Sweedler; Bruce R. Southey; Preethi H. Gunaratne; M. G. Watson

The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken—the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.


PLOS Genetics | 2011

Repetitive Elements May Comprise Over Two-Thirds of the Human Genome

A. P. Jason de Koning; Wanjun Gu; Todd A. Castoe; Mark A. Batzer; David D. Pollock

Transposable elements (TEs) are conventionally identified in eukaryotic genomes by alignment to consensus element sequences. Using this approach, about half of the human genome has been previously identified as TEs and low-complexity repeats. We recently developed a highly sensitive alternative de novo strategy, P-clouds, that instead searches for clusters of high-abundance oligonucleotides that are related in sequence space (oligo “clouds”). We show here that P-clouds predicts >840 Mbp of additional repetitive sequences in the human genome, thus suggesting that 66%–69% of the human genome is repetitive or repeat-derived. To investigate this remarkable difference, we conducted detailed analyses of the ability of both P-clouds and a commonly used conventional approach, RepeatMasker (RM), to detect different sized fragments of the highly abundant human Alu and MIR SINEs. RM can have surprisingly low sensitivity for even moderately long fragments, in contrast to P-clouds, which has good sensitivity down to small fragment sizes (∼25 bp). Although short fragments have a high intrinsic probability of being false positives, we performed a probabilistic annotation that reflects this fact. We further developed “element-specific” P-clouds (ESPs) to identify novel Alu and MIR SINE elements, and using it we identified ∼100 Mb of previously unannotated human elements. ESP estimates of new MIR sequences are in good agreement with RM-based predictions of the amount that RM missed. These results highlight the need for combined, probabilistic genome annotation approaches and suggest that the human genome consists of substantially more repetitive sequence than previously believed.


Nature | 2015

An integrated map of structural variation in 2,504 human genomes

Peter H. Sudmant; Tobias Rausch; Eugene J. Gardner; Robert E. Handsaker; Alexej Abyzov; John Huddleston; Zhang Y; Kai Ye; Goo Jun; Markus His Yang Fritz; Miriam K. Konkel; Ankit Malhotra; Adrian M. Stütz; Xinghua Shi; Francesco Paolo Casale; Jieming Chen; Fereydoun Hormozdiari; Gargi Dayama; Ken Chen; Maika Malig; Mark Chaisson; Klaudia Walter; Sascha Meiers; Seva Kashin; Erik Garrison; Adam Auton; Hugo Y. K. Lam; Xinmeng Jasmine Mu; Can Alkan; Danny Antaki

Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.


American Journal of Human Genetics | 2000

The Distribution of Human Genetic Diversity: A Comparison of Mitochondrial, Autosomal, and Y-Chromosome Data

Lynn B. Jorde; W. S. Watkins; Michael J. Bamshad; Missy Dixon; C. E. Ricker; Mark Seielstad; Mark A. Batzer

We report a comparison of worldwide genetic variation among 255 individuals by using autosomal, mitochondrial, and Y-chromosome polymorphisms. Variation is assessed by use of 30 autosomal restriction-site polymorphisms (RSPs), 60 autosomal short-tandem-repeat polymorphisms (STRPs), 13 Alu-insertion polymorphisms and one LINE-1 element, 611 bp of mitochondrial control-region sequence, and 10 Y-chromosome polymorphisms. Analysis of these data reveals substantial congruity among this diverse array of genetic systems. With the exception of the autosomal RSPs, in which an ascertainment bias exists, all systems show greater gene diversity in Africans than in either Europeans or Asians. Africans also have the largest total number of alleles, as well as the largest number of unique alleles, for most systems. GST values are 11%-18% for the autosomal systems and are two to three times higher for the mtDNA sequence and Y-chromosome RSPs. This difference is expected because of the lower effective population size of mtDNA and Y chromosomes. A lower value is seen for Y-chromosome STRs, reflecting a relative lack of continental population structure, as a result of rapid mutation and genetic drift. Africa has higher GST values than does either Europe or Asia for all systems except the Y-chromosome STRs and Alus. All systems except the Y-chromosome STRs show less variation between populations within continents than between continents. These results are reassuring in their consistency and offer broad support for an African origin of modern human populations.


Nature | 2011

Comparative and demographic analysis of orang-utan genomes

Devin P. Locke; LaDeana W. Hillier; Wesley C. Warren; Kim C. Worley; Lynne V. Nazareth; Donna M. Muzny; Shiaw-Pyng Yang; Zhengyuan Wang; Asif T. Chinwalla; Patrick Minx; Makedonka Mitreva; Lisa Cook; Kim D. Delehaunty; Catrina C. Fronick; Heather K. Schmidt; Lucinda A. Fulton; Robert S. Fulton; Joanne O. Nelson; Vincent Magrini; Craig S. Pohl; Tina Graves; Chris Markovic; Andy Cree; Huyen Dinh; Jennifer Hume; Christie Kovar; Gerald Fowler; Gerton Lunter; Stephen Meader; Andreas Heger

‘Orang-utan’ is derived from a Malay term meaning ‘man of the forest’ and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (Ne) expanded exponentially relative to the ancestral Ne after the split, while Bornean Ne declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.


Nature Genetics | 2002

DNA repair mediated by endonuclease-independent LINE-1 retrotransposition

Tammy A. Morrish; Nicolas Gilbert; Jeremy S. Myers; Bethaney J. Vincent; Thomas D. Stamato; Guillermo E. Taccioli; Mark A. Batzer; John V. Moran

Long interspersed elements (LINE-1s) are abundant retrotransposons in mammalian genomes that probably retrotranspose by target site-primed reverse transcription (TPRT). During TPRT, the LINE-1 endonuclease cleaves genomic DNA, freeing a 3′ hydroxyl that serves as a primer for reverse transcription of LINE-1 RNA by LINE-1 reverse transcriptase. The nascent LINE-1 cDNA joins to genomic DNA, generating LINE-1 structural hallmarks such as frequent 5′ truncations, a 3′ poly(A)+ tail and variable-length target site duplications (TSDs). Here we describe a pathway for LINE-1 retrotransposition in Chinese hamster ovary (CHO) cells that acts independently of endonuclease but is dependent upon reverse transcriptase. We show that endonuclease-independent LINE-1 retrotransposition occurs at near-wildtype levels in two mutant cell lines that are deficient in nonhomologous end-joining (NHEJ). Analysis of the pre- and post-integration sites revealed that endonuclease-independent retrotransposition results in unusual structures because the LINE-1s integrate at atypical target sequences, are truncated predominantly at their 3′ ends and lack TSDs. Moreover, two of nine endonuclease-independent retrotranspositions contained cDNA fragments at their 3′ ends that are probably derived from the reverse transcription of endogenous mRNA. Thus, our results suggest that LINE-1s can integrate into DNA lesions, resulting in retrotransposon-mediated DNA repair in mammalian cells.

Collaboration


Dive into the Mark A. Batzer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerilyn A. Walker

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miriam K. Konkel

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge