Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark A. Beilstein is active.

Publication


Featured researches published by Mark A. Beilstein.


Plant Systematics and Evolution | 2006

Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview

Ihsan A. Al-Shehbaz; Mark A. Beilstein; E. A. Kellogg

A critical review of characters used in the systematics of the Brassicaceae is given, and aspects of the origin, classification, and generic delimitation of the family discussed. Molecular phylogenetic studies of the family were reviewed, and major clades identified. Based on molecular studies, especially from the ndhF chloroplast gene, and careful evaluation of morphology and generic circumscriptions, a new tribal alignment of the Brassicaceae is proposed. In all, 25 tribes are recognized, of which seven (Aethionemeae, Boechereae, Descurainieae, Eutremeae, Halimolobeae, Noccaeeae, and Smelowskieae) are described as new. For each tribe, the center(s) of distribution, morphology, and number of taxa are given. Of the 338 genera currently recognized in the Brassicaceae, about 260 genera (or about 77%) were either assigned or tentatively assigned to the 25 tribes. Some problems relating to various genera and tribes are discussed, and future research developments are briefly covered.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana

Mark A. Beilstein; Nathalie S. Nagalingum; Mark D. Clements; Steven R. Manchester; Sarah Mathews

Dated molecular phylogenies are the basis for understanding species diversity and for linking changes in rates of diversification with historical events such as restructuring in developmental pathways, genome doubling, or dispersal onto a new continent. Valid fossil calibration points are essential to the accurate estimation of divergence dates, but for many groups of flowering plants fossil evidence is unavailable or limited. Arabidopsis thaliana, the primary genetic model in plant biology and the first plant to have its entire genome sequenced, belongs to one such group, the plant family Brassicaceae. Thus, the timing of A. thaliana evolution and the history of its genome have been controversial. We bring previously overlooked fossil evidence to bear on these questions and find the split between A. thaliana and Arabidopsis lyrata occurred about 13 Mya, and that the split between Arabidopsis and the Brassica complex (broccoli, cabbage, canola) occurred about 43 Mya. These estimates, which are two- to threefold older than previous estimates, indicate that gene, genomic, and developmental evolution occurred much more slowly than previously hypothesized and that Arabidopsis evolved during a period of warming rather than of cooling. We detected a 2- to 10-fold shift in species diversification rates on the branch uniting Brassicaceae with its sister families. The timing of this shift suggests a possible impact of the Cretaceous–Paleogene mass extinction on their radiation and that Brassicales codiversified with pierid butterflies that specialize on mustard-oil–producing plants.


American Journal of Botany | 2006

Brassicaceae phylogeny and trichome evolution

Mark A. Beilstein; Ihsan A. Al-Shehbaz; Elizabeth A. Kellogg

To estimate the evolutionary history of the mustard family (Brassicaceae or Cruciferae), we sampled 113 species, representing 101 of the roughly 350 genera and 17 of the 19 tribes of the family, for the chloroplast gene ndhF. The included accessions increase the number of genera sampled over previous phylogenetic studies by four-fold. Using parsimony, likelihood, and Bayesian methods, we reconstructed the phylogeny of the gene and used the Shimodaira-Hasegawa test (S-H test) to compare the phylogenetic results with the most recent tribal classification for the family. The resultant phylogeny allowed a critical assessment of variations in fruit morphology and seed anatomy, upon which the current classification is based. We also used the S-H test to examine the utility of trichome branching patterns for describing monophyletic groups in the ndhF phylogeny. Our phylogenetic results indicate that 97 of 114 ingroup accessions fall into one of 21 strongly supported clades. Some of these clades can themselves be grouped into strongly to moderately supported monophyletic groups. One of these lineages is a novel grouping overlooked in previous phylogenetic studies. Results comparing 30 different scenarios of evolution by the S-H test indicate that five of 12 tribes represented by two or more genera in the study are clearly polyphyletic, although a few tribes are not sampled well enough to establish para- or polyphyly. In addition, branched trichomes likely evolved independently several times in the Brassicaceae, although malpighiaceous and stellate trichomes may each have a single origin.


American Journal of Botany | 2008

Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited

Mark A. Beilstein; Ihsan A. Al-Shehbaz; Sarah Mathews; Elizabeth A. Kellogg

The family Brassicaceae comprises 3710 species in 338 genera, 25 recently delimited tribes, and three major lineages based on phylogenetic results from the chloroplast gene ndhF. To assess the credibility of the lineages and newly delimited tribes, we sequenced an approximately 1.8-kb region of the nuclear phytochrome A (PHYA) gene for taxa previously sampled for the chloroplast gene ndhF. Using parsimony, likelihood, and Bayesian methods, we reconstructed the phylogeny of the gene and used the approximately unbiased (AU) test to compare phylogenetic results from PHYA with findings from ndhF. We also combined ndhF and PHYA data and used a Bayesian mixed model approach to infer phylogeny. PHYA and combined analyses recovered the same three large lineages as those recovered in ndhF trees, increasing confidence in these lineages. The combined tree confirms the monophyly of most of the recently delimited tribes (only Alysseae, Anchonieae, and Descurainieae are not monophyletic), while 13 of the 23 sampled tribes are monophyletic in PHYA trees. In addition to phylogenetic results, we documented the trichome branching morphology of species across the phylogeny and explored the evolution of different trichome morphologies using the AU test. Our results indicate that dendritic, medifixed, and stellate trichomes likely evolved independently several times in the Brassicaceae.


Neuroscience | 2000

Selective attenuation of psychostimulant-induced behavioral responses in mice lacking A2A adenosine receptors

Jiang-Fan Chen; Mark A. Beilstein; Yuehang Xu; Timothy J. Turner; Rosario Moratalla; David G. Standaert; Vincent J. Aloyo; J.S. Fink; Michael A. Schwarzschild

A(2A) adenosine receptors are highly expressed in the striatum where they modulate dopaminergic activity. The role of A(2A) receptors in psychostimulant action is less well understood because of the lack of A(2A)-selective compounds with access to the central nervous system. To investigate the A(2A) adenosinergic regulation of psychostimulant responses, we examined the consequences of genetic deletion of A(2A) receptors on psychostimulant-induced behavioral responses. The extent of dopaminergic innervation and expression of dopamine receptors in the striatum were indistinguishable between A(2A) receptor knockout and wild-type mice. However, locomotor responses to amphetamine and cocaine were attenuated in A(2A) knockout mice. In contrast, D(1)-like receptor agonists SKF81297 and SKF38393 produced identical locomotor stimulation and grooming, respectively, in wild-type and A(2A) knockout mice. Similarly, the D(2)-like agonist quinpirole produced motor-depression and stereotypy that were indistinguishable between A(2A) knockout and wild-type mice. Furthermore, attenuated amphetamine- (but not SKF81297-) induced locomotion was observed in pure 129-Steel as well as hybrid 129-SteelxC57BL/6 mice, confirming A(2A) receptor deficiency (and not genetic background) as the cause of the blunted psychostimulant responses in A(2A) knockout mice. These results demonstrate that A(2A) receptor deficiency selectively attenuates psychostimulant-induced behavioral responses and support an important role for the A(2A) receptor in modulating psychostimulant effects.


Cell Cycle | 2010

Evolution of CST function in telomere maintenance

Carolyn M. Price; Kara A. Boltz; Mary F. Chaiken; Jason Stewart; Mark A. Beilstein; Dorothy E. Shippen

Telomeres consist of an elaborate, higher-order DNA architecture, and a suite of proteins that provide protection for the chromosome terminus by blocking inappropriate recombination and nucleolytic attack, and facilitate telomeric DNA replication by physical interactions with telomerase and the lagging strand replication machinery. The prevailing view has been that two distinct telomere capping complexes evolved, shelterin in vertebrates and a trimeric complex comprised of Cdc13, Stn1 and Ten1 (CST) in yeast. The recent discovery of a CST-like complex in plants and humans raises new questions about the composition of telomeres and their regulatory mechanisms in multicellular eukaryotes. In this review we discuss the evolving functions and interactions of CST components and their contributions to chromosome end protection and DNA replication.


Frontiers in Plant Science | 2013

The Reference Genome of the Halophytic Plant Eutrema salsugineum

Ruolin Yang; David E. Jarvis; Hao Chen; Mark A. Beilstein; Jane Grimwood; Jerry Jenkins; Shengqiang Shu; Simon Prochnik; Mingming Xin; Chuang Ma; Jeremy Schmutz; Rod A. Wing; Thomas Mitchell-Olds; Karen S. Schumaker; Xiangfeng Wang

Halophytes are plants that can naturally tolerate high concentrations of salt in the soil, and their tolerance to salt stress may occur through various evolutionary and molecular mechanisms. Eutrema salsugineum is a halophytic species in the Brassicaceae that can naturally tolerate multiple types of abiotic stresses that typically limit crop productivity, including extreme salinity and cold. It has been widely used as a laboratorial model for stress biology research in plants. Here, we present the reference genome sequence (241 Mb) of E. salsugineum at 8× coverage sequenced using the traditional Sanger sequencing-based approach with comparison to its close relative Arabidopsis thaliana. The E. salsugineum genome contains 26,531 protein-coding genes and 51.4% of its genome is composed of repetitive sequences that mostly reside in pericentromeric regions. Comparative analyses of the genome structures, protein-coding genes, microRNAs, stress-related pathways, and estimated translation efficiency of proteins between E. salsugineum and A. thaliana suggest that halophyte adaptation to environmental stresses may occur via a global network adjustment of multiple regulatory mechanisms. The E. salsugineum genome provides a resource to identify naturally occurring genetic alterations contributing to the adaptation of halophytic plants to salinity and that might be bioengineered in related crop species.


BMC Plant Biology | 2010

Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes

Carolyn Hutcheon; Renata F. Ditt; Mark A. Beilstein; Luca Comai; Jesara Schroeder; Elianna Goldstein; Christine K. Shewmaker; Thu Nguyen; Jay De Rocher; Jack Kiser

BackgroundCamelina sativa, an oilseed crop in the Brassicaceae family, has inspired renewed interest due to its potential for biofuels applications. Little is understood of the nature of the C. sativa genome, however. A study was undertaken to characterize two genes in the fatty acid biosynthesis pathway, fatty acid desaturase (FAD) 2 and fatty acid elongase (FAE) 1, which revealed unexpected complexity in the C. sativa genome.ResultsIn C. sativa, Southern analysis indicates the presence of three copies of both FAD2 and FAE1 as well as LFY, a known single copy gene in other species. All three copies of both CsFAD2 and CsFAE1 are expressed in developing seeds, and sequence alignments show that previously described conserved sites are present, suggesting that all three copies of both genes could be functional. The regions downstream of CsFAD2 and upstream of CsFAE1 demonstrate co-linearity with the Arabidopsis genome. In addition, three expressed haplotypes were observed for six predicted single-copy genes in 454 sequencing analysis and results from flow cytometry indicate that the DNA content of C. sativa is approximately three-fold that of diploid Camelina relatives. Phylogenetic analyses further support a history of duplication and indicate that C. sativa and C. microcarpa might share a parental genome.ConclusionsThere is compelling evidence for triplication of the C. sativa genome, including a larger chromosome number and three-fold larger measured genome size than other Camelina relatives, three isolated copies of FAD2, FAE1, and the KCS17-FAE1 intergenic region, and three expressed haplotypes observed for six predicted single-copy genes. Based on these results, we propose that C. sativa be considered an allohexaploid. The characterization of fatty acid synthesis pathway genes will allow for the future manipulation of oil composition of this emerging biofuel crop; however, targeted manipulations of oil composition and general development of C. sativa should consider and, when possible take advantage of, the implications of polyploidy.


Philosophical Transactions of the Royal Society B | 2010

A duplicate gene rooting of seed plants and the phylogenetic position of flowering plants

Sarah Mathews; Mark D. Clements; Mark A. Beilstein

Flowering plants represent the most significant branch in the tree of land plants, with respect to the number of extant species, their impact on the shaping of modern ecosystems and their economic importance. However, unlike so many persistent phylogenetic problems that have yielded to insights from DNA sequence data, the mystery surrounding the origin of angiosperms has deepened with the advent and advance of molecular systematics. Strong statistical support for competing hypotheses and recent novel trees from molecular data suggest that the accuracy of current molecular trees requires further testing. Analyses of phytochrome amino acids using a duplicate gene-rooting approach yield trees that unite cycads and angiosperms in a clade that is sister to a clade in which Gingko and Cupressophyta are successive sister taxa to gnetophytes plus Pinaceae. Application of a cycads + angiosperms backbone constraint in analyses of a morphological dataset yields better resolved trees than do analyses in which extant gymnosperms are forced to be monophyletic. The results have implications both for our assessment of uncertainty in trees from sequence data and for our use of molecular constraints as a way to integrate insights from morphological and molecular evidence.


Molecular Cell | 2015

Global Analysis of the RNA-Protein Interaction and RNA Secondary Structure Landscapes of the Arabidopsis Nucleus

Sager J. Gosai; Shawn W. Foley; Dongxue Wang; Ian M. Silverman; Nur Selamoglu; Andrew D. L. Nelson; Mark A. Beilstein; Fevzi Daldal; Roger B. Deal; Brian D. Gregory

Posttranscriptional regulation in eukaryotes requires cis- and trans-acting features and factors including RNA secondary structure and RNA-binding proteins (RBPs). However, a comprehensive view of the structural and RBP interaction landscape of nuclear RNAs has yet to be compiled for any organism. Here, we use our ribonuclease-mediated structure and RBP-binding site mapping approaches to globally profile these features in Arabidopsis seedling nuclei in vivo. We reveal anticorrelated patterns of secondary structure and RBP binding throughout nuclear mRNAs that demarcate sites of alternative splicing and polyadenylation. We also uncover a collection of protein-bound sequence motifs, and identify their structural contexts, co-occurrences in transcripts encoding functionally related proteins, and interactions with putative RBPs. Finally, using these motifs, we find that the chloroplast RBP CP29A also interacts with nuclear mRNAs. In total, we provide a simultaneous view of the RNA secondary structure and RBP interaction landscapes in a eukaryotic nucleus.

Collaboration


Dive into the Mark A. Beilstein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge