Mark A. Blight
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark A. Blight.
Journal of Molecular Biology | 2003
Lutz Schmitt; Houssain Benabdelhak; Mark A. Blight; I. Barry Holland; Milton T. Stubbs
The ABC-transporter haemolysin B is a central component of the secretion machinery that translocates the toxin, haemolysin A, in a Sec-independent fashion across both membranes of E. coli. Here, we report the X-ray crystal structure of the nucleotide-binding domain (NBD) of HlyB. The molecule shares the common overall architecture of ABC-transporter NBDs. However, the last three residues of the Walker A motif adopt a 3(10) helical conformation, stabilized by a bound anion. In consequence, this results in an unusual interaction between the Walker A lysine residue and the Walker B glutamate residue. As these residues are normally required to be available for ATP binding, for catalysis and for dimer formation of ABC domains, we suggest that this conformation may represent a latent monomeric form of the NBD. Surprisingly, comparison of available NBD structures revealed a structurally diverse region (SDR) of about 30 residues within the helical arm II domain, unique to each of the eight NBDs analyzed. As this region interacts with the transmembrane part of ABC-transporters, the SDR helps to explain the selectivity and/or targeting of different NBDs to their cognate transmembrane domains.
Journal of Bacteriology | 2001
Phillip J. Daborn; Nicholas R. Waterfield; Mark A. Blight; Richard H. ffrench-Constant
During insect infection Photorhabdus luminescens emits light and expresses virulence factors, including insecticidal toxin complexes (Tcs) and an RTX-like metalloprotease (Prt). Using quantitative PCR and protein assays, we describe the expression patterns of these factors both in culture and during insect infection and compare them to the associated bacterial growth curves. In culture, light and active Prt protease are produced in stationary phase. Tca also appears in stationary phase, whereas Tcd is expressed earlier. These patterns seen in a culture flask are strikingly similar to those observed during insect infection. Thus, in an infected insect, bacteria grow exponentially until the time of insect death at approximately 48 h, when both light and the virulence factors Prt protease and Tca are produced. In contrast, Tcd appears much earlier in insect infection. However, at present, the biological significance of this difference in timing of the production of the two toxins in unclear. This is the first documentation of the expression of Tcs and Prt in an insect and highlights the malleability of Photorhabdus as a model system for bacterial infection.
Journal of Molecular Biology | 2003
Houssain Benabdelhak; Stephan Kiontke; Carsten Horn; Robert Ernst; Mark A. Blight; I. Barry Holland; Lutz Schmitt
A member of the family of RTX toxins, Escherichia coli haemolysin A, is secreted from Gram-negative bacteria. It carries a C-terminal secretion signal of approximately 50 residues, targeting the protein to the secretion or translocation complex, in which the ABC-transporter HlyB is a central element. We have purified the nucleotide-binding domain of HlyB (HlyB-NBD) and a C-terminal 23kDa fragment of HlyA plus the His-tag (HlyA1), which contains the secretion sequence. Employing surface plasmon resonance, we were able to demonstrate that the HlyB-NBD and HlyA1 interact with a K(D) of approximately 4 microM. No interaction was detected between the HlyA fragment and unrelated NBDs, OpuAA, involved in import of osmoprotectants, and human TAP1-NBD, involved in the export of antigenic peptides. Moreover, a truncated version of HlyA1, lacking the secretion signal, failed to interact with the HlyB-NBD. In addition, we showed that ATP accelerated the dissociation of the HlyB-NBD/HlyA1 complex. Taking these results together, we propose a model for an early stage of initiation of secretion in vivo, in which the NBD of HlyB, specifically recognizes the C terminus of the transport substrate, HlyA, and where secretion is initiated by subsequent displacement of HlyA from HlyB by ATP.
Current Opinion in Biotechnology | 1994
Mark A. Blight; Christian Chervaux; I. Barry Holland
The export of proteins to the Escherichia coli periplasm is a well established system for heterologous protein production. With a better understanding of the protein export (SecA,Y-dependent) process and a greater awareness of the conditions necessary for correct folding of proteins in the periplasm, serious efforts are now being made to manipulate this system to achieve substantial increases in the yield of authentically folded proteins. Further advances in the development of methods for the recovery of recombinant proteins from the culture medium have made the use of fusion proteins secreted by the protein A or haemolysin pathways a more attractive option. Recent studies of the haemolysin system indicate its ability to secrete a wide range of polypeptides, including normally cytoplasmic proteins. As their features and potential applications become much clearer, a rapidly expanding number of protein-secretion mechanisms in Gram-negative bacteria are becoming available for heterologous protein expression. Most, if not all, of these systems can be successfully transplanted into E. coli, providing a wider choice of systems for the future.
Journal of Bacteriology | 2005
A. Pimenta; K. Racher; L. Jamieson; Mark A. Blight; I. B. Holland
HlyD, a member of the membrane fusion protein family, is essential for the secretion of the RTX hemolytic toxin HlyA from Escherichia coli. Random point mutations affecting HlyA secretion were obtained, distributed in most periplasmic regions of the HlyD molecule. Analysis of the secretion phenotypes of different mutants allowed the identification of regions in HlyD involved in different steps of HlyA translocation. Four mutants, V349-I, T85-I, V334-I and L165-Q, were conditionally defective, a phenotype shown to be linked to the presence of inhibitory concentrations of Ca2+ in extracellular medium. Hly mutant T85-I was defective at an early stage in secretion, while mutants V334-I and L165-Q appeared to accumulate HlyA in the cell envelope, indicating a block at an intermediate step. Mutants V349-I, V334-I, and L165-Q were only partially defective in secretion, allowing significant levels of HlyA to be transported, but in the case of V349-I and L165-Q the HlyA molecules secreted showed greatly reduced hemolytic activity. Hemolysin molecules secreted from V349-I and V334-I are defective in normal folding and can be reactivated in vitro to the same levels as HlyA secreted from the wild-type translocator. Both V349-I and V334-I mutations mapped to the C-terminal lipoyl repeat motif, involved in the switching from the helical hairpin to the extended form of HlyD during assembly of the functional transport channel. These results suggest that HlyD is an integral component of the transport pathway, whose integrity is essential for the final folding of secreted HlyA into its active form.
Molecular Genetics and Genomics | 1994
Mark A. Blight; A. L. Pimenta; J. C. Lazzaroni; C. Dando; L. Kotelevets; Simone J. Séror; I. B. Holland
We have carried out a genetic analysis of Escherichia coli HlyB using in vitro(hydroxylamine) mutagenesis and regionally directed mutagenesis. From random mutagenesis, three mutants, temperature sensitive (Ts) for secretion, were isolated and the DNA sequenced: Glyl0Arg close to the N-terminus, Gly408Asp in a highly conserved small periplasmic loop region PIV, and Pro624Leu in another highly conserved region, within the ATP-binding region. Despite the Ts character of the Gly10 substitution, a derivative of HlyB, in which the first 25 amino acids were replaced by 21 amino acids of the λ Cro protein, was still active in secretion of HlyA. This indicates that this region of HlyB is dispensable for function. Interestingly, the Gly408Asp substitution was toxic at high temperature and this is the first reported example of a conditional lethal mutation in HlyB. We have isolated 4 additional mutations in PIV by directed mutagenesis, giving a total of 5 out of 12 residues substituted in this region, with 4 mutations rendering HlyB defective in secretion. The Pro624 mutation, close to the Walker B-site for ATP binding in the cytoplasmic domain is identical to a mutation in HisP that leads to uncoupling of ATP hydrolysis from the transport of histidine. The expression of a fully functional haemolysin translocation system comprising HlyC,A,B and D increases the sensitivity of E. coli to vancomycin 2.5-fold, compared with cells expressing HlyB and HlyD alone. Thus, active translocation of HlyA renders the cells hyperpermeable to the drug. Mutations in hlyB affecting secretion could be assigned to two classes: those that restore the level of vancomycin resistance to that of E. coli not secreting HlyA and those that still confer hypersensitivity to the drug in the presence of HlyA. We propose that mutations that promote vancomycin resistance will include mutations affecting initial recognition of the secretion signal and therefore activation of a functional transport channel. Mutations that do not alter HlyA-dependent vancomycin sensitivity may, in contrast, affect later steps in the transport process.
Archive | 1997
Andréa de Lima Pimenta; Mark A. Blight; Christian Chervaux; I. Barry Holland
Since the initial characterization of the hemolysin secretion system (Hly) from the Gram-negative bacterium, E. coli, by W. Goebel’s group in the late 1970s, there has been a surprising proliferation of discoveries of distinct pro¬tein secretion mechanisms in many Gram-negative bacteria. Both for the Hly system and for other secretion pathways, developments have been the most dramatic over the last 5 years and, therefore, in this review we have placed most detailed emphasis upon this period up to approximately mid-1996. Previous reviews have generally agreed on the classification of secretion Types I, II, III, indicated in this review. Here (see also reference 5), we have proposed a classification for additional pathways: Type IV (auto-transporter systems like the IgA pathway); Type V for surface pilins (E. coli Pap system), the functionally related Type Va, although not homologous with the pilin system, are transported from the periplasm via a single outer membrane “translocator” protein; Type VI for the special case of the filamentous phage (nucleo-protein) secretory pathway. The secretion of flagellar proteins on to the cell surface, although not discussed in this review, could be considered yet another pathway (for review see reference 5a). However, the biogenesis of the flagellum involves at least eight proteins with homology to proteins of the Type III pathway. We emphasize that Types IV–VI, as defined here, are useful working classifications but a generally agreed classification for these secretion pathways in the literature has not yet emerged. What can be generally agreed upon is that Types I, III and VI are one step processes with translocation from cytoplasm directly on to the cell surface or to the medium, while other pathways employ a two-step mechanism involving initial export to the periplasm targeted by an N-terminal signal via the Sec-machinery (general export pathway). The second stage then involves translocation across the outer membrane by various mechanisms. Importantly, the proteins of the latter group are apparently translocated across the outer membrane in a fully folded form, while proteins translocated directly to the outside of the cell (Types I, III) and perhaps IV may be required to re-fold on the surface.
Molecular Genetics and Genomics | 1999
Andréa de Lima Pimenta; J. Young; I. B. Holland; Mark A. Blight
Abstract HlyD has a single transmembrane domain (residues 59-80) and a large periplasmic domain, and is essential for the secretion of haemolysin from Escherichia coli. Using an antibody raised against HlyD, the protein was localised to the cell envelope by immunofluorescence and to the cytoplasmic membrane by sucrose gradient analysis. We have examined the stability of this protein in the presence and absence of other putative components of the translocator, HlyB and TolC. HlyD is normally highly stable but in the absence of TolC, the steady-state level of HlyD is greatly reduced and the protein has a half-life at 37° C of 36 min. In the absence of HlyB, HlyD is also unstable and specific degradation products are detected, which co-fractionate with the inner membrane, indicating in this case limited cleavage at specific sites. However, the effect of removing both HlyB and TolC is not additive. On the contrary, in the absence of both HlyB and TolC the half-life of HlyD is approximately 110 min. This result shows that in the presence of HlyB removal of TolC renders HlyD more unstable than it is in the absence of both HlyB and TolC. This suggests that the presence of HlyB induces a structural change in HlyD. In addition, HlyB itself appears to be less stable in the absence of HlyD. These results are consistent with an interaction between HlyD/TolC and HlyB/HlyD. A derivative of HlyD, HlyD22, lacking the 40 N-terminal residues of HlyD assembles into the inner membrane displaying the same stability with and without HlyB as wild type HlyD does. This N-terminal region therefore appears to play no role in stable localisation but is involved in secretion, since HlyD22 is completely secretion defective. Modification of the C-terminus on the other hand completely destabilised the molecule and HlyD was not detectable in the envelope. Secretion of active haemolysin is limited to a brief period during mid to late exponential phase. In contrast, HlyD is apparently synthesised constitutively throughout the growth phase, demonstrating that the production of this component of the translocator is not the limiting factor for growth phase-dependent secretion.
Microbiology | 2002
Michèle Valens; Anne-Cécile Broutelle; Mélanie Lefebvre; Mark A. Blight
The entomopathogen Photorhabdus luminescens secretes many proteins during the late stages of insect larvae infection and during in vitro laboratory culture. The authors have previously characterized and purified a 55 kDa zinc metalloprotease, PrtA, from culture supernatants of P. luminescens. PrtA is secreted via a classical type I secretory pathway and is encoded within the operon prtA-inh-prtBCD. The 405 bp inh gene encodes a 14.8 kDa pre-protein that is translocated to the periplasm by the classical signal-peptide-dependent sec pathway, yielding the mature 11.9 kDa inhibitor Inh. Inh is a specific inhibitor of the protease PrtA. This study describes the purification of Inh and the initial characterization of its in vitro protease inhibition properties.
Journal of Bacteriology | 2004
L. M. Meslet-Cladiere; A. Pimenta; E. Duchaud; I. B. Holland; Mark A. Blight
Photorhabdus temperata K122 is an entomopathogenic bacterium symbiotically associated with nematodes of the family Heterorhabditidae: Surface fimbriae are important for the colonization of many pathogenic bacteria, and here we report the nucleotide sequence and analysis of the expression of a 12-kbp fragment encoding the mannose-resistant fimbriae of P. temperata (mrf). The mrf gene cluster contains 11 genes with an organization similar to that of the mrp locus from Proteus mirabilis. mrfI (encoding a putative recombinase) and mrfA (encoding pilin), the first gene in an apparent operon of nine other genes, are expressed from divergent promoters. The mrfI-mrfA intergenic region contains inverted repeats flanking the mrfA promoter. This region was shown to be capable of inversion, consistent with an ON/OFF regulation of the operon. In in vitro liquid cultures, both orientations were detected. Nevertheless, when we analyzed the expression of all of the genes in the mrf locus by semiquantitative reverse transcription-PCR during infection of Galleria mellonella (greater wax moth) larvae, expression of mrfA was not detected until 25 h postinfection, preceding the death of the larvae at 32 h. In contrast, mrfJ (a putative inhibitor of flagellar synthesis) was expressed throughout infection. Expression of mrfI was also detected only late in infection (25 to 30 h), indicating a possible increase in inversion frequency at this stage. In both in vitro liquid cultures and in vivo larval infections, the distal genes of the operon were expressed at substantially lower levels than mrfA. These results indicate the complex regulation of the mrf cluster during infection.