Mark A. Boetel
North Dakota State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark A. Boetel.
Journal of Economic Entomology | 2008
Wen-Long Chen; Roger A. Leopold; Mark A. Boetel
Abstract Storage of Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae) adults at 2, 5, and 10°C showed that these parasitoids do not survive at 2°C for 5 d, and exposure to 5 and 10°C shortens their life span. The lethal time (LT)50 (i.e., length of storage time for 50% wasp survival) at 5°C was 14 d for males and ≈29 d for females, whereas at 10°C was 32 and 39 d, respectively. Effects of adult storage at 10°C on other factors indicating fitness, such as fecundity, developmental time, parasitism, emergence, and sex ratio, were examined on female wasps and their progeny at 10-d intervals for up to 60 d. Glassy-winged sharpshooter, Homalodisca vitripennis (Germar), eggs were used as hosts for propagation of this wasp and for assessing its oviposition and fecundity. Increasing adult storage time decreased the length of the ovipositional period for the maternal generation, and oviposition was decreased by 90% after 60-d storage. A significant reduction in maternal lifetime fecundity occurred after 20-d storage and in the incidence of parasitism after 40 d. We also found a carryover effect caused by storage of the maternal generation that was expressed in the F1 generation. When cold storage of the adult parents was ≥20 d, we observed delayed development, decreased fecundity, reduced longevity, and increased male production occurring in the F1 generation. Reduced fitness of the F1 generation was also expressed as a decrease in net reproductive rate (R0) and an increase in mean generation time (Tc). However, none of these deleterious effects were evident in the F2 progeny that descended from grandparents that had experienced cold storage. Damage caused by indirect chilling injury and/or induced maternal aging occurring during storage can account for the decreased fitness of maternal and F1 generations. Providing that the limits of cold tolerance of G. ashmeadi as defined in this study are not exceeded, our results show that short-term cold storage of adults could be used in a mass-rearing program.
Journal of Economic Entomology | 2005
B. L. Mcmanus; B. W. Fuller; Mark A. Boetel; B. W. French; M. M. Ellsbury; G. P. Head
Lady beetles (Coleoptera: Coccinellidae) are important polyphagous predators in maize, Zea mays L., fields. Transgenic Cry3Bb1 maize hybrids express a coleopteran-specific insecticidal protein derived from Bacillus thuringiensis (Berliner) subsp. kumamotoensis that is targeted at corn rootworm larvae. This study evaluated impacts of Cry3Bb1 protein-expressing maize, tefluthrin-treated maize, and untreated controls on lady beetle abundance at preanthesis, anthesis, and postanthesis maize-developmental periods near Brookings in eastern South Dakota during 2001 and 2002. The dominant lady beetle species captured on Pherocon AM sticky traps was Coleomegilla maculata De Geer. It comprised 73.5 and 69.9% of all adult Coccinellidae caught in 2001 and 2002, respectively. Numbers of C. maculata captured in Cry3Bb1 maize were not significantly different from those in untreated plots during preanthesis, and adults were more abundant in Cry3Bb1 maize than in tefluthrin-treated and untreated plots during anthesis and postanthesis. Whole-plant sampling confirmed C. maculata predominance with the species representing 89.2 and 91.4% of all adult lady beetles observed in 2001 and 2002, respectively. Whole-plant sampling also indicated a lack of negative effects from Cry3Bb1 maize on abundance of lady beetle eggs, larvae, pupae, or adults. Overall, these findings indicate that Cry3Bb1-expressing hybrids are not likely to impose harmful effects on C. maculata, a species common to maize production systems in the northern Great Plains. This research further suggests that Cry3Bb1 maize has the potential for conservation of these beneficial coccinellids in maize production systems.
Environmental Entomology | 2010
Wen-Long Chen; Roger A. Leopold; Mark A. Boetel
ABSTRACT Development, survivorship, longevity, reproduction, and life table parameters of the glassy-winged sharpshooter, Homalodisca vitripennis (Germar), were examined in the laboratory using three host plants, sunflower (Helianthus annuus L.), Chrysanthemum morifolium L., and euonymus (Euonymus japonica Thurb.). Females deposited similar-sized egg masses on all three plants. Hatching was highest with eggs deposited on euonymus and lowest for those deposited on sunflower. Embryonic development time among host plants was similar while nymph development time was shortest on sunflower and longest on euonymus. Nymph survival to adulthood ranged from 32% on euonymus to 82% for those reared on sunflower. Adult females had similar life spans on sunflower and chrysanthemum. H. vitripennis completed a lengthy egg-to-adult development on euonymus, however, mating did not occur. The onset of mating was contingent on maturation of adult females. The majority of mating activity occurred within the first three days after onset. Premating periods ranged from 6 to 7 d on sunflower to 27 d on chrysanthemum, with overall mating rates of 77.4 and 19.8%, respectively. Females typically mated more than once and they had the longest oviposition period and highest egg production on sunflower; ≈50 and 67% of total number of eggs were deposited within first 45 d after the start of oviposition on sunflower and chrysanthemum, respectively. Adult size and weight related to which host plant was consumed throughout development. Greater intrinsic and finite rates of increase and net reproduction rate, and shorter population doubling time occurred when the sharpshooters were allowed to develop on sunflower. The overall developmental and reproductive parameters obtained in this study indicate that a mixed host plant system, composed of sunflower and euonymus or chrysanthemum plants, is an efficient means for optimizing egg production and colony maintenance of the glassy-winged sharpshooter.
Comparative Biochemistry and Physiology B | 2010
Anitha Chirumamilla; James S. Buckner; George D. Yocum; Charlotte L. Fatland; Mark A. Boetel
Sugarbeet root maggots, Tetanops myopaeformis (Diptera, Ulidiidae), survive more than five years of laboratory cold (6 degrees C) storage as mature third-instar larvae. To quantify energy costs associated with prolonged storage, internal lipids of larvae stored for 1, 2, 3, and 5 years were compared and characterized with those of field-collected diapausing larvae. Internal lipid concentration was highest (21.8% wet wt. and 29.8% dry wt.) in diapausing larvae. Lipids decreased progressively over storage time with greater than 70% reductions for 5-year stored larvae. Thin-layer chromatographic analysis revealed that triacylglycerols (TAGs) were the most predominant class of internal lipids, with trace amounts of diacylglycerols and hydrocarbons also being present. Gas chromatography-mass spectrometry (GC-MS) analyses of TAG fractions identified ten major fatty acids (FAs). The proportion of unsaturated FAs was higher (73 to 78%) than saturated FAs in diapausing and stored larval groups. Palmitoleic acid (16:1) was the predominant FA, constituting 40-50% of total unsaturated FAs with lesser amounts of myristoleic (14:1), oleic (18:1), lauroleic (12:1), gadoleic (20:1), and the saturated FAs, palmitic (16:0), myristic (14:0), lauric (12:0), stearic (18:0), and arachidic (20:0) being detected at much lower concentrations. Characterization of intact TAGs by high performance liquid chromatography and GC-MS revealed the presence of more than 40 TAG constituents. In conclusion, TAGs are utilized as an important energy source for T. myopaeformis larvae during diapause and long-term cold storage with no observed impact of multi-year storage on the TAG composition and distribution of their fatty acids.
Journal of Insect Physiology | 2008
Anitha Chirumamilla; George D. Yocum; Mark A. Boetel; Robert J. Dregseth
To test the hypothesis that long-term survival of sugarbeet root maggot in storage is facilitated by larvae undergoing prolonged diapause, respiration and gene expression patterns of field-collected diapausing larvae were compared with those of 1-, 2-, and 5-year laboratory-stored larvae. Additional assessments were made on post-storage survival, emergence, and reproductive fitness of stored larvae. Respirometry, carried out at 5 and 20 degrees C revealed no differences among respiration rates of initially diapausing and long-term stored larvae. A 15 degrees increase in temperature elevated respiration in both diapausing and stored larvae, with levels of CO2 release ranging between 8- and 14-fold higher at 20 degrees C than at 5 degrees C. Similarly, 6-10-fold increases in O2 consumption levels were observed at the higher temperature. A transcript with sequence similarity to the fat body protein 2 (Fbp2) gene was highly expressed in diapausing larvae, and trace levels were expressed in some samples of 1-year stored larvae. However, no expression was detected in 2- and 5-year stored larvae. Survival and emergence studies of stored larvae revealed mixed populations of diapausing (i.e., the 5-17% of larvae that did not pupate) and post-diapausing (62-84% of larvae pupated) insects, with a high incidence of pupation (62%) and emergence (47%), even after 4 years in cold storage. Therefore, extended survival of Tetanops myopaeformis larvae in long-term cold storage is facilitated by two mechanisms, with a majority of larvae in post-diapause quiescence and a smaller fraction in a state of prolonged diapause.
Environmental Entomology | 2006
L. G. Campbell; Mark A. Boetel; N. B. Jonason; S. T. Jaronski; L. J. Smith
Abstract Producers in many North American sugarbeet (Beta vulgaris L.) growing areas rely heavily on organophosphate insecticides to manage the sugarbeet root maggot, Tetanops myopaeformis Röder. The threat of losing organophosphate options because of the potential for development of resistant root maggot strains or regulatory action has prompted a search for alternative control tools. American Type Culture Collection (ATCC) accession no. 62176, a strain of the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin, was studied in field trials as a bioinsecticidal option for control of T. myopaeformis larvae because of shown virulence in preliminary laboratory testing. The fungus was evaluated at four field sites during 2001 and 2002 as a planting-time granule, an aqueous postemergence spray, or a combination of both. Three rates of M. anisopliae conidia, 4 × 1012 (1×), 8 × 1012 (2×), and 1.6 × 1013/ha (4×) were applied as granules, and the spray was tested at the 1× rate. A significant linear response in sucrose yield in relation to M. anisopliae granule application rate confirmed its entomopathogenic capacity under field conditions. Each multiple of M. anisopliae granules applied affected a yield increase of ≈171 kg sucrose/ha. The fungus was less effective than conventional insecticides at preventing stand loss from high root maggot infestations early in the season. It is concluded that, with additional research, mycoinsecticides could potentially be incorporated into management systems to complement chemical control tactics such as insecticidal seed treatments, soil insecticides (possibly at reduced rates), or postemergence materials for integrated control of T. myopaeformis adults or larvae.
Annals of The Entomological Society of America | 2012
Prasad S. Burange; Richard L. Roehrdanz; Mark A. Boetel
ABSTRACT The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), is a highly polyphagous insect pest. It is the most widely distributed Lygus species in North America, and it is the most prevalent member of the genus Lygus in the eastern half of the continent. We sampled multiple populations of L. lineolaris from three disparate regions of North America, and used parts of the mitochondrial genes cytochrome oxidase 1 and cytochrome oxidase 2 as markers to assess intraspecific diversity of this species. Results indicated that there is an association between genetic population structure and geography. Neighbor-joining, maximum parsimony, Bayesian inference analysis, and maximum likelihood trees suggested that most L. lineolaris individuals belong to two closely related clades showing sympatric distribution. Mitochondrial DNA haplotypes common to widely dispersed populations were observed. Morphological identities of five L. lineolaris samples that formed an outlier clade indicated incongruence between morphological identity and genetic data. Individuals from the two major clades and one disparate clade did not exhibit recognizable morphological differences. No strong host plant associations were observed among clades, thus, genetic structuring in this species appears to mostly be geographically based. This study represents the first attempt to survey cytochrome oxidase 1 and cytochrome oxidase 2 variation within L. lineolaris and to use those genes to construct a molecular phylogeny for this species.
Biocontrol Science and Technology | 2012
Mark A. Boetel; Ayanava Majumdar; Stefan T. Jaronski; Richard D. Horsley
Abstract The sugarbeet root maggot, Tetanops myopaeformis (Röder), is a major North American pest of sugarbeet, Beta vulgaris L. Previous research suggests that moderate T. myopaeformis control is possible with the entomopathogen Metarhizium anisopliae (Metch.) Sorok. We conducted a three-year (2002–2004) experiment to assess impacts of oat, Avena sativa L. and rye, Secale cereale L., cover crops on persistence of corn grit-based granular or spray formulations of M. anisopliae isolate ATCC 62176 (i.e. MA 1200) applied at 8×1012 viable conidia/ha in sugarbeet. More colony forming units (CFUs) were detected immediately after application [0 days after treatment (DAT)] in spray plots than granule-treated plots. However, 76–92% declines in CFUs per gram of soil occurred in spray plots within 30 DAT. Substantially (i.e. 83–560%) more rainfall occurred in June 2002 than during June of any other year. Subsequently, 71–670% increases in CFU concentrations occurred by 60 DAT in M. anisopliae granule-treated plots with oat or rye cover crops that year. CFU density increases were higher in cover crops in 2002, but no significant cover crop effects were detected. Conidia persisted for up to 30 DAT in M. anisopliae spray plots and 60 DAT in granule-treated plots in 2002; however, no increases occurred in the years with less June rainfall. Trends suggest that M. anisopliae aqueous sprays result in greater conidia concentrations than granules at sugarbeet plant bases in June during T. myopaeformis oviposition and larval establishment on host plants. Increases are possible when delivering conidia via granules, but high post-application rainfall could be necessary for conidia production.
Physiological Entomology | 2012
George D. Yocum; Joseph P. Rinehart; Mark A. Boetel
The sugarbeet root maggot Tetanops myopaeformis Röder (Diptera: Ulidiidae) can be stored in moist sand at 4–6 °C for up to 5 years and is freeze‐tolerant. The majority of stored larvae survive in a state of post‐diapause quiescence and the remainder are in a multi‐year diapause. The present study aims to determine larval water content and water loss rates in diapausing and low‐temperature stored larvae. Body water content ranges from 57% to 70.1%. Two distinct groupings of larvae are revealed based on dry weights. The first group consists of the diapausing larvae and larvae stored for 1 year. This group has significantly higher dry weights than the second grouping, which consists of the larvae stored for 2 and 3 years. There are no significant differences within each group. Larval water losses follow a first‐order kinetic relationship with time. Larvae stored for 2 years lose water at a significantly higher rate than diapausing larvae. Larvae exhibit no active water uptake at storage temperatures. A freezing event does not induce a significant decrease in wet weights, nor does it increase larval water loss rates. These results indicate that metabolic water and the microclimate during storage are key factors enabling the long‐term survival of T. myopaeformis larvae during low‐temperature storage, and may provide insights for maintaining other insect species under similar conditions.
Physiological Entomology | 2009
Joseph P. Rinehart; George D. Yocum; Anitha Chirumamilla-Chapara; Mark A. Boetel
Abstract The sugarbeet root maggot Tetanops myopaeformis (Röder) overwinters as a freeze‐tolerant third‐instar larva. Although most larvae are considered to overwinter for only 1 year, some may exhibit prolonged diapause in the field. In the laboratory, they can live for over 5 years using a combination of diapause and post‐diapause quiescence. In the present study, the cold survival strategies of these larvae during storage is investigated by measuring their supercooling points in combination with survival data. Supercooling points (SCPs) change significantly during storage, highlighted by a marked increase in the range of SCPs recorded, although the ability to tolerate freezing is not affected. Additionally, a freezing event ‘re‐focuses’ the SCPs of aged larvae to levels similar to those seen at diapause initiation. This change in SCPs is dependant not only on the initial freezing event, but also on the parameters of the incubation period between freezing events. Finally, the temperatures of larval overwintering microhabitats are monitored during the 2007–2008 boreal winter. The results indicate that, although overwintering larva are physiologically freeze‐tolerant, they may essentially be freeze avoidant during overwintering via microhabitat selection.