Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark A. Brockman is active.

Publication


Featured researches published by Mark A. Brockman.


Nature Immunology | 2007

Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction

Daniel E. Kaufmann; Daniel G. Kavanagh; Florencia Pereyra; John Zaunders; Elizabeth W. Mackey; Toshiyuki Miura; Sarah Palmer; Mark A. Brockman; Almas Rathod; Alicja Piechocka-Trocha; Brett Baker; Baogong Zhu; Sylvie Le Gall; Michael T. Waring; Ryan Ahern; Kristin Moss; Anthony D. Kelleher; John M. Coffin; Gordon J. Freeman; Eric S. Rosenberg; Bruce D. Walker

In progressive viral infection, antiviral T cell function is impaired by poorly understood mechanisms. Here we report that the inhibitory immunoregulatory receptor CTLA-4 was selectively upregulated in human immunodeficiency virus (HIV)–specific CD4+ T cells but not CD8+ T cells in all categories of HIV-infected subjects evaluated, with the exception of rare people able to control viremia in the absence of antiretroviral therapy. CTLA-4 expression correlated positively with disease progression and negatively with the capacity of CD4+ T cells to produce interleukin 2 in response to viral antigen. Most HIV-specific CD4+ T cells coexpressed CTLA-4 and another inhibitory immunoregulatory receptor, PD-1. In vitro blockade of CTLA-4 augmented HIV-specific CD4+ T cell function. These data, indicating a reversible immunoregulatory pathway selectively associated with CD4+ T cell dysfunction, provide a potential target for immunotherapy in HIV-infected patients.


Journal of Virology | 2007

Escape from the Dominant HLA-B27-Restricted Cytotoxic T-Lymphocyte Response in Gag Is Associated with a Dramatic Reduction in Human Immunodeficiency Virus Type 1 Replication

Arne Schneidewind; Mark A. Brockman; Ruifeng Yang; Rahma I. Adam; Bin Li; Sylvie Le Gall; Charles R. Rinaldo; Sharon L. Craggs; Rachel L. Allgaier; Karen A. Power; Thomas Kuntzen; Chang-Shung Tung; Montiago X. LaBute; Sandra M. Mueller; Thomas Harrer; Andrew J. McMichael; Philip J. R. Goulder; Christopher Aiken; Christian Brander; Anthony D. Kelleher; Todd M. Allen

ABSTRACT Human leukocyte antigen (HLA)-B27-positive subjects are uncommon in their ability to control infection with human immunodeficiency virus type 1 (HIV-1). However, late viral escape from a narrowly directed immunodominant Gag-specific CD8+ T-lymphocyte (CTL) response has been linked to AIDS progression in these individuals. Identifying the mechanism of the immune-mediated control may provide critical insights into HIV-1 vaccine development. Here, we illustrate that the CTL escape mutation R264K in the HLA-B27-restricted KK10 epitope in the capsid resulted in a significant defect in viral replication in vitro. The R264K variant was impaired in generating late reverse transcription products, indicating that replication was blocked at a postentry step. Notably, the R264K mutation was associated in vivo with the development of a rare secondary mutation, S173A, which restored viral replication in vitro. Furthermore, infectivity of the R264K variant was rescued by the addition of cyclosporine A or infection of a cyclophilin A-deficient cell line. These data demonstrate a severe functional defect imposed by the R264K mutation during an early step in viral replication that is likely due to the inability of this variant to replicate efficiently in the presence of normal levels of cyclophilin A. We conclude that the impact of the R264K substitution on capsid structure constrains viral escape and enables long-term maintenance of the dominant CTL response against B27-KK10, providing an explanation for the protective effect of HLA-B27 during HIV infection.


Journal of Virology | 2007

Escape and Compensation from Early HLA-B57-Mediated Cytotoxic T-Lymphocyte Pressure on Human Immunodeficiency Virus Type 1 Gag Alter Capsid Interactions with Cyclophilin A

Mark A. Brockman; Arne Schneidewind; Matthew P. Lahaie; Aaron G. Schmidt; Toshiyuki Miura; Ivna DeSouza; Faina Ryvkin; Cynthia A. Derdeyn; Susan Allen; Eric Hunter; Joseph Mulenga; Paul A. Goepfert; Bruce D. Walker; Todd M. Allen

ABSTRACT Certain histocompatibility leukocyte antigen (HLA) alleles are associated with improved clinical outcomes for individuals infected with human immunodeficiency virus type 1 (HIV-1), but the mechanisms for their effects remain undefined. An early CD8+ T-cell escape mutation in the dominant HLA-B57-restricted Gag epitope TW10 (TSTLQEQIGW) has been shown to impair HIV-1 replication capacity in vitro. We demonstrate here that this T242N substitution in the capsid protein is associated with upstream mutations at residues H219, I223, and M228 in the cyclophilin A (CypA)-binding loop in B57+ individuals with progressive disease. In an independent cohort of epidemiologically linked transmission pairs, the presence of these substitutions in viruses encoding T242N was associated with significantly higher plasma viremia in donors, further suggesting that these secondary mutations compensated for the replication defect of T242N. Using NL4-3 constructs, we illustrate the ability of these CypA loop changes to partially restore replication of the T242N variant in vitro. Notably, these mutations also enhanced viral resistance to the drug cyclosporine A, indicating a reduced dependence of the compensated virus on CypA that is normally essential for optimal infectivity. Therefore, mutations in TW10 allow HIV-1 to evade a dominant early CD8+ T-cell response, but the benefits of escape are offset by a defect in capsid function. These data suggest that TW10 escape variants undergo a postentry block that is partially overcome by changes in the CypA-binding loop and identify a mechanism for an HIV-1 fitness defect that may contribute to the slower disease progression associated with HLA-B57.


Journal of Virology | 2009

HLA-B57/B*5801 Human Immunodeficiency Virus Type 1 Elite Controllers Select for Rare Gag Variants Associated with Reduced Viral Replication Capacity and Strong Cytotoxic T-Lymphotye Recognition

Toshiyuki Miura; Mark A. Brockman; Arne Schneidewind; Michael A. Lobritz; Florencia Pereyra; Almas Rathod; Brian L. Block; Zabrina L. Brumme; Chanson J. Brumme; Brett Baker; Alissa C. Rothchild; Bin Li; Alicja Trocha; Emily Cutrell; Nicole Frahm; Christian Brander; Ildiko Toth; Eric J. Arts; Todd M. Allen; Bruce D. Walker

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) elite controllers (EC) maintain viremia below the limit of commercial assay detection (<50 RNA copies/ml) in the absence of antiviral therapy, but the mechanisms of control remain unclear. HLA-B57 and the closely related allele B*5801 are particularly associated with enhanced control and recognize the same Gag240-249 TW10 epitope. The typical escape mutation (T242N) within this epitope diminishes viral replication capacity in chronically infected persons; however, little is known about TW10 epitope sequences in residual replicating viruses in B57/B*5801 EC and the extent to which mutations within this epitope may influence steady-state viremia. Here we analyzed TW10 in a total of 50 B57/B*5801-positive subjects (23 EC and 27 viremic subjects). Autologous plasma viral sequences from both EC and viremic subjects frequently harbored the typical cytotoxic T-lymphocyte (CTL)-selected mutation T242N (15/23 sequences [65.2%] versus 23/27 sequences [85.1%], respectively; P = 0.18). However, other unique mutants were identified in HIV controllers, both within and flanking TW10, that were associated with an even greater reduction in viral replication capacity in vitro. In addition, strong CTL responses to many of these unique TW10 variants were detected by gamma interferon-specific enzyme-linked immunospot assay. These data suggest a dual mechanism for durable control of HIV replication, consisting of viral fitness loss resulting from CTL escape mutations together with strong CD8 T-cell immune responses to the arising variant epitopes.


Blood | 2009

IL-10 is up-regulated in multiple cell types during viremic HIV infection and reversibly inhibits virus-specific T cells

Mark A. Brockman; Douglas S. Kwon; Daniel P. Tighe; David F. Pavlik; Pamela C. Rosato; Jennifer Sela; Filippos Porichis; Sylvie Le Gall; Michael T. Waring; Kristin Moss; Heiko Jessen; Florencia Pereyra; Daniel G. Kavanagh; Bruce D. Walker; Daniel E. Kaufmann

Murine models indicate that interleukin-10 (IL-10) can suppress viral clearance, and interventional blockade of IL-10 activity has been proposed to enhance immunity in chronic viral infections. Increased IL-10 levels have been observed during HIV infection and IL-10 blockade has been shown to enhance T-cell function in some HIV-infected subjects. However, the categories of individuals in whom the IL-10 pathway is up-regulated are poorly defined, and the cellular sources of IL-10 in these subjects remain to be determined. Here we report that blockade of the IL-10 pathway augmented in vitro proliferative capacity of HIV-specific CD4 and CD8 T cells in individuals with ongoing viral replication. IL-10 blockade also increased cytokine secretion by HIV-specific CD4 T cells. Spontaneous IL-10 expression, measured as either plasma IL-10 protein or IL-10 mRNA in peripheral blood mononuclear cells (PBMCs), correlated positively with viral load and diminished after successful antiretroviral therapy. IL-10 mRNA levels were up-regulated in multiple PBMC subsets in HIV-infected subjects compared with HIV-negative controls, particularly in T, B, and natural killer (NK) cells, whereas monocytes were a major source of IL-10 mRNA in HIV-infected and -uninfected individuals. These data indicate that multiple cell types contribute to IL-10-mediated immune suppression in the presence of uncontrolled HIV viremia.


Journal of Virology | 2008

Structural and Functional Constraints Limit Options for Cytotoxic T-Lymphocyte Escape in the Immunodominant HLA-B27-Restricted Epitope in Human Immunodeficiency Virus Type 1 Capsid

Arne Schneidewind; Mark A. Brockman; John Sidney; Yaoyu E. Wang; Huabiao Chen; Todd J. Suscovich; Bin Li; Rahma I. Adam; Rachel L. Allgaier; Bianca R. Mothé; Thomas Kuntzen; Cesar Oniangue-Ndza; Alicja Trocha; Xu G. Yu; Christian Brander; Alessandro Sette; Bruce D. Walker; Todd M. Allen

ABSTRACT Control of human immunodeficiency virus type 1 (HIV-1) by HLA-B27-positive subjects has been linked to an immunodominant CD8+ cytotoxic T-lymphocyte (CTL) response targeting the conserved KK10 epitope (KRWIILGLNK263-272) in p24/Gag. Viral escape in KK10 typically occurs through development of an R264K substitution in conjunction with the upstream compensatory mutation S173A, and the difficulty of the virus to escape from the immune response against the KK10 epitope until late in infection has been associated with slower clinical progression. Rare alternative escape mutations at R264 have been observed, but factors dictating the preferential selection of R264K remain unclear. Here we illustrate that while all observed R264 mutations (K, G, Q, and T) reduced peptide binding to HLA-B27 and impaired viral replication, the replicative defects of the alternative mutants were actually less pronounced than those for R264K. Importantly, however, none of these mutants replicated as well as an R264K variant containing the compensatory mutation S173A. In assessing the combined effects of viral replication and CTL escape using an in vitro coculture assay, we further observed that the compensated R264K mutant also displayed the highest replication capacity in the presence of KK10-specific CTLs. Comparisons of codon usage for the respective variants indicated that generation of the R264K mutation may also be favored due to a G-to-A bias in nucleotide substitutions during HIV-1 replication. Together, these data suggest that the preference for R264K is due primarily to the ability of the S173A-compensated virus to replicate better than alternative variants in the presence of CTLs, suggesting that viral fitness is a key contributor for the selection of immune escape variants.


PLOS ONE | 2009

HLA-Associated Immune Escape Pathways in HIV-1 Subtype B Gag, Pol and Nef Proteins

Zabrina L. Brumme; M. John; Jonathan M. Carlson; Chanson J. Brumme; Dennison Chan; Mark A. Brockman; Luke C. Swenson; Iris Tao; Sharon Szeto; Pamela C. Rosato; Jennifer Sela; Carl M. Kadie; Nicole Frahm; Christian Brander; David W. Haas; Sharon A. Riddler; Richard Haubrich; Bruce D. Walker; P. Richard Harrigan; David Heckerman; S. Mallal

Background Despite the extensive genetic diversity of HIV-1, viral evolution in response to immune selective pressures follows broadly predictable mutational patterns. Sites and pathways of Human Leukocyte-Antigen (HLA)-associated polymorphisms in HIV-1 have been identified through the analysis of population-level data, but the full extent of immune escape pathways remains incompletely characterized. Here, in the largest analysis of HIV-1 subtype B sequences undertaken to date, we identify HLA-associated polymorphisms in the three HIV-1 proteins most commonly considered in cellular-based vaccine strategies. Results are organized into protein-wide escape maps illustrating the sites and pathways of HLA-driven viral evolution. Methodology/Principal Findings HLA-associated polymorphisms were identified in HIV-1 Gag, Pol and Nef in a multicenter cohort of >1500 chronically subtype-B infected, treatment-naïve individuals from established cohorts in Canada, the USA and Western Australia. At q≤0.05, 282 codons commonly mutating under HLA-associated immune pressures were identified in these three proteins. The greatest density of associations was observed in Nef (where close to 40% of codons exhibited a significant HLA association), followed by Gag then Pol (where ∼15–20% of codons exhibited HLA associations), confirming the extensive impact of immune selection on HIV evolution and diversity. Analysis of HIV codon covariation patterns identified over 2000 codon-codon interactions at q≤0.05, illustrating the dense and complex networks of linked escape and secondary/compensatory mutations. Conclusions/Significance The immune escape maps and associated data are intended to serve as a user-friendly guide to the locations of common escape mutations and covarying codons in HIV-1 subtype B, and as a resource facilitating the systematic identification and classification of immune escape mutations. These resources should facilitate research in HIV epitope discovery and host-pathogen co-evolution, and are relevant to the continued search for an effective CTL-based AIDS vaccine.


Journal of Virology | 2008

Genetic Characterization of Human Immunodeficiency Virus Type 1 in Elite Controllers: Lack of Gross Genetic Defects or Common Amino Acid Changes

Toshiyuki Miura; Mark A. Brockman; Chanson J. Brumme; Zabrina L. Brumme; Jonathan M. Carlson; Florencia Pereyra; Alicja Trocha; Marylyn M. Addo; Brian L. Block; Alissa C. Rothchild; Brett Baker; Theresa Flynn; Arne Schneidewind; Bin Li; Yaoyu E. Wang; David Heckerman; Todd M. Allen; Bruce D. Walker

ABSTRACT Despite reports of viral genetic defects in persons who control human immunodeficiency virus type 1 (HIV-1) in the absence of antiviral therapy, the extent to which such defects contribute to the long-term containment of viremia is not known. Most previous studies examining for such defects have involved small numbers of subjects, primarily focused on subjects expressing HLA-B57, or have examined single viral genes, and they have focused on cellular proviral DNA rather than plasma viral RNA sequences. Here, we attempted viral sequencing from 95 HIV-1 elite controllers (EC) who maintained plasma viral loads of <50 RNA copies/ml in the absence of therapy, the majority of whom did not express HLA-B57. HIV-1 gene fragments were obtained from 94% (89/95) of the EC, and plasma viral sequences were obtained from 78% (61/78), the latter indicating the presence of replicating virus in the majority of EC. Of 63 persons for whom nef was sequenced, only three cases of nef deletions were identified, and gross genetic defects were rarely observed in other HIV-1 coding genes. In a codon-by-codon comparison between EC and persons with progressive infection, correcting for HLA bias and coevolving secondary mutations, a significant difference was observed at only three codons in Gag, all three of which represented the historic population consensus amino acid at the time of infection. These results indicate that the spontaneous control of HIV replication is not attributable to shared viral genetic defects or shared viral polymorphisms.


Journal of Virology | 2009

HLA-Associated Alterations in Replication Capacity of Chimeric NL4-3 Viruses Carrying gag-protease from Elite Controllers of Human Immunodeficiency Virus Type 1

Toshiyuki Miura; Mark A. Brockman; Zabrina L. Brumme; Chanson J. Brumme; Florencia Pereyra; Alicja Trocha; Brian L. Block; Arne Schneidewind; Todd M. Allen; David Heckerman; Bruce D. Walker

ABSTRACT Human immunodeficiency virus type 1 (HIV-1)-infected persons who maintain plasma viral loads of <50 copies RNA/ml without treatment have been termed elite controllers (EC). Factors contributing to durable control of HIV in EC are unknown, but an HLA-dependent mechanism is suggested by overrepresentation of “protective” class I alleles, such as B*27, B*51, and B*57. Here we investigated the relative replication capacity of viruses (VRC) obtained from EC (n = 54) compared to those from chronic progressors (CP; n = 41) by constructing chimeric viruses using patient-derived gag-protease sequences amplified from plasma HIV RNA and inserted into an NL4-3 backbone. The chimeric viruses generated from EC displayed lower VRC than did viruses from CP (P < 0.0001). HLA-B*57 was associated with lower VRC (P = 0.0002) than were other alleles in both EC and CP groups. Chimeric viruses from B*57+ EC (n = 18) demonstrated lower VRC than did viruses from B*57+ CP (n = 8, P = 0.0245). Differences in VRC between EC and CP were also observed for viruses obtained from individuals expressing no described “protective” alleles (P = 0.0065). Intriguingly, two common HLA alleles, A*02 and B*07, were associated with higher VRC (P = 0.0140 and 0.0097, respectively), and there was no difference in VRC between EC and CP sharing these common HLA alleles. These findings indicate that cytotoxic T-lymphocyte (CTL) selection pressure on gag-protease alters VRC, and HIV-specific CTLs inducing escape mutations with fitness costs in this region may be important for strict viremia control in EC of HIV.


Journal of Virology | 2010

Impaired Replication Capacity of Acute/Early Viruses in Persons Who Become HIV Controllers

Toshiyuki Miura; Zabrina L. Brumme; Mark A. Brockman; Pamela C. Rosato; Jennifer Sela; Chanson J. Brumme; Florencia Pereyra; Daniel E. Kaufmann; Alicja Trocha; Brian L. Block; Eric S. Daar; Elizabeth Connick; Heiko Jessen; Anthony D. Kelleher; Eric S. Rosenberg; Martin Markowitz; Kim Schafer; Florin Vaida; Aikichi Iwamoto; Susan J. Little; Bruce D. Walker

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) controllers maintain viremia at <2,000 RNA copies/ml without antiretroviral therapy. Viruses from controllers with chronic infection were shown to exhibit impaired replication capacities, in part associated with escape mutations from cytotoxic-T-lymphocyte (CTL) responses. In contrast, little is known about viruses during acute/early infection in individuals who subsequently become HIV controllers. Here, we examine the viral replication capacities, HLA types, and virus sequences from 18 HIV-1 controllers identified during primary infection. gag-protease chimeric viruses constructed using the earliest postinfection samples displayed significantly lower replication capacities than isolates from persons who failed to control viremia (P = 0.0003). Protective HLA class I alleles were not enriched in these early HIV controllers, but viral sequencing revealed a significantly higher prevalence of drug resistance mutations associated with impaired viral fitness in controllers than in noncontrollers (6/15 [40.0%] versus 10/80 [12.5%], P = 0.018). Moreover, of two HLA-B57-positive (B57+) controllers identified, both harbored, at the earliest time point tested, signature escape mutations within Gag that likewise impair viral replication capacity. Only five controllers did not express “protective” alleles or harbor viruses with drug resistance mutations; intriguingly, two of them displayed typical B57 signature mutations (T242N), suggesting the acquisition of attenuated viruses from B57+ donors. These data indicate that acute/early stage viruses from persons who become controllers have evidence of reduced replication capacity during the initial stages of infection which is likely associated with transmitted or acquired CTL escape mutations or transmitted drug resistance mutations. These data suggest that viral dynamics during acute infection have a major impact on HIV disease outcome.

Collaboration


Dive into the Mark A. Brockman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chanson J. Brumme

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Martin

Simon Fraser University

View shared research outputs
Researchain Logo
Decentralizing Knowledge